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1Department of Earth Sciences, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA. E-mail: hajanisz@hawaii.edu
2Department of Earth Science, University of California, Santa Barbara, CA 93106, USA
3Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912, USA
4School of Earth & Sustainability, Northern Arizona University, Flagstaff, AZ 86011, USA
5Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
6Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964-1000, USA

Accepted 2022 November 16. Received 2022 November 11; in original form 2022 May 10

S U M M A R Y
We present a new compilation and analysis of broad-band ocean bottom seismometer noise
properties from 15 yr of seismic deployments. We compile a comprehensive data set of repre-
sentative four-component (seismometer and pressure gauge) noise spectra and cross-spectral
properties (coherence, phase and admittance) for 551 unique stations spanning 18 U.S.-led ex-
periments. This is matched with a comprehensive compilation of metadata parameters related
to instrumentation and environmental properties for each station. We systematically investigate
the similarity of noise spectra by grouping them according to these metadata parameters to
determine which factors are the most important in determining noise characteristics. We find
evidence for improvements in similarity of noise properties when grouped across parameters,
with groupings by seismometer type and deployment water depth yielding the most significant
and interpretable results. Instrument design, that is the entire deployed package, also plays
an important role, although it strongly covaries with seismometer and water depth. We assess
the presence of traditional sources of tilt, compliance, and microseismic noise to characterize
their relative role across a variety of commonly used seismic frequency bands. We find that
the presence of tilt noise is primarily dependent on the type of seismometer used (covari-
ant with a particular subset of instrument design), that compliance noise follows anticipated
relationships with water depth, and that shallow, oceanic shelf environments have systemat-
ically different microseism noise properties (which are, in turn, different from instruments
deployed in shallow lake environments). These observations have important implications for
the viability of commonly used seismic analysis techniques. Finally, we compare spectra and
coherences before and after vertical channel tilt and compliance noise removal to evaluate
the efficacy and limitations of these now standard processing techniques. These findings may
assist in future experiment planning and instrument development, and our newly compiled
noise data set serves as a building block for more targeted future investigations by the marine
seismology community.

Key words: Seismic noise; Seismic instruments; Instrumental noise; Site effects; Pacific
Ocean; Atlantic Ocean.

1 I N T RO D U C T I O N

Over recent decades, the marine seismological community has made
steady progress in the deployment of increasingly high-quality and
large(r)-N broad-band ocean-bottom seismometer (BBOBS) net-
works. It is approximately 30 yr since the advent of modern-standard
ocean-floor seismic instruments (Cox et al. 1984; Montagner et al.
1994; Webb et al. 1994; Purdy & Orcutt 1995; Collins et al. 2001;

Stephen et al. 2003) led to the formation of the Ocean Bottom Seis-
mic Instrument Pool (OBSIP) in 1999 (Aderhold et al. 2019). It is
approximately 10 yr since the conception and execution of one of
the most ambitious community BBOBS deployments to date: the
Cascadia Initiative (Toomey et al. 2014). Systematic archiving of
seismic and pressure-gauge data at the Incorporated Research In-
stitutions for Seismology (IRIS) Data Management Center (DMC),
along with community tools for preprocessing BBOBS data (e.g.
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ATaCR, Janiszewski et al. 2019; DLOPy, Doran & Laske 2017)
have substantially expanded the reach and salience of BBOBS data
across the wider seismological community. With the recent reorga-
nization of the national U.S. instrument pool into the Ocean Bottom
Seismic Instrument Center (OBSIC), the emergence and expansion
of improving hardware (Goncharov et al. 2016; Shinohara et al.
2018), renewed planning towards long-term BBOBS observatories
(Kohler et al. 2020), and the evolution of new seafloor technologies
(Spica et al. 2020; Lior et al. 2021), this is an apposite juncture to
assess the systematics of BBOBS noise traits.

Analyses of spectra (including both seismometer and pressure-
gauge data) for individual deployments suggest significant seismic
noise variations exist among deployed BBOBSs (Yang et al. 2012;
Sumy et al. 2015; Barcheck et al. 2020; An et al. 2021). Direct com-
parisons of their noise have largely focused on single-instrument
tests rather than arrays (Webb 1998), extrapolating vault sensor
performance to in situ conditions (Stähler et al. 2018), or pilot
studies that contrast different installation techniques (e.g. Collins
et al. 2001). These are limited in location and do not include all
types of BBOBS design in the modern OBSIC fleet. To date, a sys-
tematic noise comparison across deployments that encompasses the
full range of instrument designs, water depths and site conditions
does not exist. Recent analyses using the Cascadia Initiative data
set demonstrate variability as a function of instrument design and
water depth (Bell et al. 2015; Hilmo & Wilcock 2020), motivating
expansion of such analyses across deployments.

In this study, we present a comprehensive data set describing the
last 15 yr of U.S.-funded BBOBS array deployments (Fig. 1). We
compute representative multicomponent noise spectra from stations
deployed in a variety of environments, water depths, and using
several different instrument designs. We calculate cross-channel
coherences, upper and lower bounds on typical noise, and investigate
systematics of noise within a variety of frequency bands spanning
from 0.001 to 1 Hz. Using this data set, we offer a comprehensive
and quantitative review of the character and sources of noise on
BBOBS instruments.

2 B A C KG RO U N D

2.1 Noise sources

The noise power spectrum from 0.001 to 1 Hz on BBOBS instru-
ments is influenced by the presence and strength of microseism
noise, infragravity waves, and tilt or bottom current noise. Micro-
seism noise is characterized by a broad, high-amplitude peak be-
tween 0.05 and 0.5 Hz, and dominates the ambient seismic energy
field world-wide (Peterson 1993; McNamara & Buland 2004). Its
prevalence has resulted in the traditional distinction between ‘high
frequency’ (>1 Hz) and ‘low frequency’ (<0.05 Hz) low-noise ob-
servational seismic bands. To first order, seafloor observations of
microseismic noise globally are consistent with the long history of
observations on land. The noise spectrum in this band is typically
divided into two peaks—the secondary microseism, with multiple
subpeaks at frequencies within 0.1–0.5 Hz (Stephen et al. 2003)
and a dominant global peak located at ∼0.14 Hz, and the primary
microseism, which peaks at ∼0.07 Hz (Webb 1998; Fig. 2).

Acoustic waves produced by the interaction of wind-generated
ocean waves with the seafloor constitute the secondary microseism
(Longuet-Higgins 1950). Several dominant mechanisms generate
these interacting waves, including storm-generated swell, coastline
reflected waves, and interactions of waves generated by multiple

storms (Bromirski et al. 2005; Ardhuin et al. 2011). Broadly, the
amplitudes of higher frequency energy within the secondary micro-
seism correlate with the local sea state, while waves generated from
distant storms and their coastal reflections play a more important
role at longer periods within this band (Babcock et al. 1994; Stephen
et al. 2003; Bromirski et al. 2005). These properties can lead to
systematic differences between ocean basins. The Pacific Ocean
appears to propagate energy from larger, more distant storms with
higher sustained wind speeds, leading to a secondary microseism
peak that extends to lower frequencies than in the North Atlantic
Ocean (Babcock et al. 1994; Webb 1998), although only limited
numbers of instruments were used for these early measurements.
More recently, Yang et al. (2012) observed systematic differences
in long period microseismic energy between BBOBSs deployed in
the South Pacific and the Tasman Sea off opposite coasts of New
Zealand, with instruments in the marginal sea relatively deficient
in longer period energy. Additionally, the secondary microseism
peak may shift to higher frequencies in lake environments (Xu et al.
2017; Smalls et al. 2019).

The primary microseism peak is generated by direct interaction
(shoaling) of ocean waves with the shoreline and rough seafloor to-
pography (Hasselmann 1963; Ardhuin 2018). In the deep ocean, the
primary microseism peak is weaker than the secondary microseism
(Ardhuin et al. 2015). At longer periods than the primary micro-
seism is a noise spectral-amplitude minimum termed the ‘noise
notch’ (Webb 1998; Fig. 2a). Significant differences exist in the
microseism properties between deep and shallow water; in shallow
water, the primary microseism has higher amplitudes than the sec-
ondary microseism due to the direct coupling between the ocean
swell with the seafloor (Webb & Crawford 2010; Hilmo & Wilcock
2020). This also reduces or removes the noise notch at shallow
BBOBS (Hilmo & Wilcock 2020; Fig. 2b).

At lower frequencies still, noise from infragravity waves and
bottom-currents is prevalent in BBOBS data. These signals are
largely absent or strongly diminished at onshore sites. Infragrav-
ity waves are long period (<∼0.03 Hz) ocean waves generated in
coastal regions. Typically, these have maximum amplitudes along
the continental shelves, but a small amount of infragravity wave
energy may reach and subsequently propagate efficiently across the
open ocean (Webb et al. 1991; Uchiyama & McWilliams 2008;
Ardhuin et al. 2014). Propagation into the deep ocean depends
on coastal morphology (Aucan & Ardhuin 2013; Crawford et al.
2015; Bogiatzis et al. 2020). Infragravity waves in the deep ocean
perturb the seafloor at long (>40 km) wavelength, such that coher-
ent signals are observed on the seismic and pressure channels of
BBOBSs (Crawford et al. 1991). On the seismometers, this com-
pliance noise is strongest on the vertical component. Compliance
noise also affects horizontal components, but is typically obscured
by other noise sources, chiefly the effects of seafloor currents (Webb
et al. 1991; Doran & Laske 2016). The pressure perturbations as-
sociated with infragravity waves have a frequency-dependent decay
with depth in the water column. As a result, the maximum frequency
at which seafloor compliance affects BBOBSs decreases in deeper
water (Crawford & Webb 2000; Bell et al. 2015), and the minimum
frequency extends beyond the low-frequency end of the sensitivity
of modern instruments (Fig. 2).

Bottom-current noise is a consequence of seafloor currents di-
rectly buffeting the instrument (Webb 1998; Collins et al. 2001),
and is impacted by the overall design profile of the BBOBS, includ-
ing interactions with ropes and antennae attached to the instrument
(Stähler et al. 2018; Essing et al. 2021). It affects the entire seismic
band (Webb 1998), but is strongest at frequencies <0.1 Hz, and
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Figure 1. Map of analysed BBOBSs (red circles). Details corresponding to each deployment are given in Table S1. Made using M Map (Pawlowicz 2020).

Figure 2. Examples of noise spectra for the Z component of a BBOBS for (a) deep-water station J36A and (b) shallow-water station M08A, both from the
Cascadia Initiative. The noise notch and infragravity bands are labelled with frequencies adjusted for each individual station. The global primary (0.07 Hz) and
secondary (0.14 Hz) microseism frequency peaks are labelled for illustrative purposes. The Peterson (1993) nominal high and low noise models are shown in
orange.

leads to substantially higher noise levels on the horizontal compo-
nents. In the case that the sensor is not perfectly level, this bottom-
current noise can also couple into the vertical component, resulting
in tilt noise (Crawford & Webb 2000). These follow a power-law
increase with decreasing frequency. Current noise is analogous to
wind-driven noise in land stations, but generally much stronger. On
horizontal components, this noise largely eliminates the traditional
low-noise observational band at frequencies below the microseism;
analyses of earthquake signals on these components are generally

limited to high-amplitude recordings (i.e. large magnitude and/or
nearby events).

2.2 Noise corrections

Tilt and compliance noise imply predictable relationships between
the vertical and horizontal, and vertical and pressure time-series,
respectively, at an individual BBOBS. Transfer functions quantify
the admittance, coherence and phase relationships (in frequency
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space) between these components (see Crawford & Webb 2000;
Bell et al. 2015). Vertical seismic components can be corrected for
tilt and compliance noise using the appropriate transfer functions
(Crawford & Webb 2000), leading to a reduction of noise levels
on this component. The approach relies on the statistical property
of signal stationarity: temporally consistent transfer functions can
be obtained by averaging frequency-domain relationships between
components across multiple time windows. Typical approaches for
calculating transfer functions include averaging over long time peri-
ods, such that transient signals occupy a relatively small percentage
of time windows (Yang et al. 2012), or removing transient signals
prior to processing (Bell et al. 2015; Janiszewski et al. 2019).

Seafloor compliance is theoretically a time-invariant property de-
scribing the response of the local subsurface to infragravity waves,
and its admittance spectrum can be inverted for shallow shear ve-
locity structure (e.g. Crawford et al. 1991; Ruan et al. 2014; Doran
& Laske 2019; Mosher et al. 2021). This implies that an effective
compliance correction can be obtained from a small number of
time-averaged transfer functions. However, tilt can vary with time,
as instruments settle in soft sediment and the degree and azimuth of
non-verticality change. Some instruments also perform gyroscopic
relevelling cycles, with varying periodicity (Bell et al. 2015). To
address these issues, tilt corrections derived from shorter-duration
(e.g. daily) transfer functions may prove more effective (e.g. Bell
et al. 2015).

3 M E T H O D S

3.1 Inclusion criteria

Our study includes BBOBSs deployed as part of experiments facil-
itated by OBSIP or OBSIC from 2005 to the present. Each BBOBS
in our data set satisfies the following criteria. (1) It contains a 3-
component, wideband or broad-band seismometer (i.e. with flat
instrument response between ∼0.01 and ∼10 Hz). We restrict our
analysis to BBOBS designs with seismometers that are still actively
used in the OBSIC fleet, which includes Guralp CMG-3T (CMG-
3T), Nanometrics Trillium Compact (T-Compact), and Nanometrics
Trillium 240 (T-240) instruments. (2) It includes a wide-band pres-
sure sensor: either a differential pressure gauge (DPG) or an abso-
lute pressure gauge (APG). (3) All four components of the BBOBS
recorded data at a sample rate of at least 5 samples-per-second
(sps). Our study does not constitute a quantification of overall data
quality; we do not account for station dropouts, broken channels or
instrument return rate. We focus on data that are considered ‘good’
to offer an analysis of noise properties that are representative of
normal BBOBS operations.

3.2 Data selection and processing

To investigate the relationship of the noise characteristics of
BBOBSs with deployment and instrument properties, we select a
subset of data at each station from which to calculate power spectra,
cross-component coherence, admittance and phase spectra, which
make up the transfer functions used for noise corrections (Crawford
& Webb 2000; Bell et al. 2015). We examine 25 d of data that are
not significantly contaminated by earthquake signals, instrument
glitches or other transient signals at each BBOBS using the ATaCR
code package (Janiszewski et al. 2019). These days are randomly
distributed throughout each deployment to average across any long-
term drift, instrument relevelling or seasonal variability (Bell et al.

2015; Stähler et al. 2016). For all seismometer and DPG channels,
we remove the instrument response using a high pass filter with a
corner frequency of 1000 s. The response is not removed from APG
channels, but we filter the data using the same procedure. All data
are downsampled to 5 sps using an anti-alias filter with a corner
frequency of 1.25 Hz.

We window each day of data into 16, 7200-s segments, overlap-
ping by 30 per cent, and apply a flat-Hanning taper to the windows.
We calculate the auto- and cross-power spectral density functions
from the finite Fourier transforms of the time-series (Bendat &
Piersol 2010; Bell et al. 2015) for each of the 16 windows. Any
windows that contain transient signals identified via quality control
procedures (see Janiszewski et al. 2019 for details) are discarded; if
more than 6 windows are discarded, the entire day is rejected and not
counted towards the 25-d sample. The windows are subsequently
averaged to calculate spectral density functions for each day of data.

We then calculate deployment-average spectral functions for each
station by averaging over all windows. A second quality-control
step discards individual days that significantly (at 95 per cent confi-
dence level) increase the standard deviation of the noise properties
(Janiszewski et al. 2019). This avoids the inclusion of days that are
dominated by anomalous signals unrepresentative of normal sta-
tion noise. While this processing procedure may not capture the
full range of variability and discards malfunctioning data segments,
it is appropriate for examining systematic trends at functioning
BBOBSs. For analysis and comparison, we take full-octave aver-
ages of the spectra in 1

8 octave intervals following the procedure of
McNamara & Buland (2004). We visually inspect all averaged spec-
tra and discard any that contain data dropouts, flatlined or obviously
non-functioning instruments, or instruments where the secondary
microseism peak was not visible (e.g. anomalously high noise floor).
This results in average spectra for vertical (Z), horizontal (H1, H2
or collectively H) and pressure (P) components at each BBOBS, as
well as average cross-component coherence, admittance, and phase
functions.

Finally, we use the computed transfer functions to estimate av-
erage tilt- and compliance-corrected Z spectra for each BBOBS
(Crawford & Webb 2000). In our discussion, we use Z-corrected to
refer to the Z component where both tilt and compliance noise have
been removed. To compute the Z-corrected spectra, all four com-
ponents of a BBOBS must pass the aforementioned quality control
procedures. After quality controls, we are left with data from 551
BBOBS with waveforms archived in the IRIS DMC that had at
least one component, and 404 that have all four components. This
includes instruments from 18 seismic experiments, with deploy-
ment years ranging from 2005 to 2019 (Table S1). In calculating the
transfer functions, we also calculate the cross spectral properties:
the coherence, admittance and phase (Bell et al. 2015). Of these,
coherence is the simplest to interpret since it varies between zero
and one and does not reflect discrepancies in instrument gain or
polarity. High coherence between the vertical and pressure compo-
nents at long periods indicates the presence of compliance noise,
and high coherence between the vertical and horizontal components
indicates tilt noise (Crawford & Webb 2000). High vertical-pressure
coherence also occurs within the microseism band, particularly near
the secondary microseism. We analyse the coherences in order to
constrain variability in the properties of tilt and compliance noise
on the BBOBS.

The approach of Crawford & Webb (2000) scales the trans-
fer function with the coherence; that is, a larger noise removal
in the data will occur in locations with higher coherence values.
Traditionally, tilt- and compliance-corrections are only calculated
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at frequencies <0.1 Hz; another approach is to only calculate cor-
rections in frequency ranges where the coherence between compo-
nents is above a cut-off value (Bell et al. 2015; Tian & Ritzwoller
2017). High coherences are also often observed in the secondary
microseism band, and this transfer function correction approach
has been extended to these higher frequencies with success (e.g.
Bowden et al. 2016). Since our investigations only rely on a sys-
tematic estimate of noise reduction after corrections, we calculate
the corrections following Crawford & Webb (2000) across the en-
tire frequency band, rather than exclude lower-coherence frequency
ranges altogether. This may lead to a slightly higher estimate of
noise reduction at frequencies with low coherence (in cases where,
in practice, it may be prudent to exclude these frequency ranges
from the noise removal process), but the effect should be minimal.
In addition, users of BBOBS data should be cautious of potential
distortion of time-series or amplitude errors when applying correc-
tions systematically over the entire frequency band. A frequency
bandwidth-limited removal or an approach that accounts for dis-
tortion may be required for some use cases, particularly when the
amplitude of the transfer function for water noise and seismic waves
is similar. A more detailed discussion can be found in Bell et al.
(2015).

3.3 Metadata compilation

To compare the noise with instrument and deployment properties,
we compile metadata information for all stations in our data set.
Instrument design was obtained from the IRIS DMC, and veri-
fied through review of individual cruise reports. Instruments are
designed by one of the three centres that comprised OBSIP—the
Lamont Doherty Earth Observatory (LDEO), Scripps Institute of
Oceanography (SIO) and Woods Hole Oceanographic Institution
(WHOI). We classify each instrument among eight unique designs
according to differences in the seismometer, pressure gauge, or the
overall package in which the instruments are housed. We do not at-
tempt to distinguish between upgrades in datalogger versions within
a given instrument design. While we utilize manufacturer nomen-
clature (CMG-3T, T-Compact and T-240) in categorizing seismome-
ters, key seismometer components (levelling system and pressure
case) are provided by the instrument operator in most cases. For
all designs, we utilize the instrument responses archived with the
data at the IRIS DMC. Our categorizations mirror those given in the
OBSIP Final Report (Aderhold et al. 2019); however, we addition-
ally distinguish between LDEO broad-band instruments that were
deployed with either a DPG or an APG. We also include informa-
tion about the geographic environment of the instruments, which
includes ocean basins and marginal seas as defined by the Interna-
tional Hydrographic Organization (1953). The deployments were
predominantly located in the Pacific Ocean and its marginal seas,
but also include the Atlantic Ocean and Lake Malawi. Details for
our instrument design categorization are given in Table 1, and the
frequency distributions of these parameters are shown in Fig. S1.
We also record the experiment in which each BBOBS was deployed.

We query the water depth of each station from the IRIS DMC;
these values are reported by cruise logs, typically from sonar read-
ings at the deployment location or through acoustic ranging (Russell
et al. 2019), and are typically accurate to ∼10 m. Where possible,
we determine the following geographic properties for each instru-
ment using global compilations: the distance to the nearest land, the
distance to the nearest tectonic plate boundary, the age of the under-
lying oceanic crust, the sediment thickness beneath each BBOBS

and the mean annual surface current velocity. To determine the dis-
tance to coastline, we calculate the distance to the nearest major
landmass from each station using the data set of Lee et al. (2018).
This parametrization ignores small islands, as we are most inter-
ested in the relationship between noise sources that may arise from
ocean-shelf interactions. We calculate the distance to the nearest
plate boundary using the compilation of Bird (2003).

We estimate crustal age using the 2-arcmin resolution seafloor
age map from Müller et al. (2008), which is primarily constrained by
prominent marine magnetic anomalies. We use the GlobSed model
(Straume et al. 2019), a 5-arcmin total sediment thickness grid for
the world’s oceans and marginal seas, to estimate sediment thick-
ness. We compute mean annual surface current velocity estimates
using the near-surface velocity climatology data from the Global
Drifter Program (Laurindo et al. 2017). For all three data sets, we
estimate the variable at the BBOBS by extracting the geographic
grid point that overlaps with the site location. If this did not ex-
ist, no value was assigned. In total, we compile and examine 11
metadata parameters at each BBOBS: ‘Experiment’, ‘Instrument
Design’, ‘Seismometer’, ‘Pressure Gauge’, ‘Environment’, ‘Water
Depth’, ‘Distance from Land’, ‘Distance to Plate Boundary’, ‘Sur-
face Current’, ‘Sediment Thickness’ and ‘Crustal Age’ (Table S2).
The distributions for these parameters are shown in Fig. S2.

There are limitations to our sampling of metadata in this analysis.
Many investigated parameters are not evenly distributed. For exam-
ple, the maximum value for distance to the coastline is 4020 km,
but >75 per cent of stations have values less than 1000 km. Some
parameters do not have available values for all stations. For exam-
ple, oceanic crustal age estimates do not exist for stations located on
the continental shelves, on submerged Zealandia continental crust,
and for lacustrine stations.

3.4 Spectral angle calculation and analysis

A primary goal of this study is to determine the properties (i.e.
metadata) of a BBOBS that determine its noise characteristics. To
this end, we divide the data set of station spectra into subgroups
defined by metadata parameter(s), and then quantify the similarity
of spectra within each subgroup. If a certain parameter is highly
determinative of noise, then spectra within each subgroup defined
by that parameter should be similar to each other, but quite distinct
from spectra in the other subgroups.

We use the ‘spectral angle’ to quantify the (dis)similarity of
spectra. This metric accounts for differences in the shape, but not
absolute amplitudes, of stations’ spectra (e.g. Sohn & Rebello 2002;
Wan et al. 2002). We are primarily interested in variations in sources
of noise (e.g. changes in the frequency distribution and extrema of
different noise peaks and troughs), and not in an average noise-level
metric. The spectral angle is better suited to this than other metrics
we tested (e.g. the Euclidean distance) that are overly sensitive to
absolute amplitude. Spectral angle is also diagnostic of differences
in noise floor between instruments, due to differences in curvature
of the spectra between high noise peaks.

For a given pair of spectra, si and sj, the spectral angle is computed
in log-frequency space as

θi, j = cos−1

(
si · s j

|si |
∣∣s j

∣∣
)

. (1)

We assign a penalty to each individual spectrum, defined as the
root-mean-square of its spectral angle with all other spectra in its
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Table 1. Information related to different BBOBS instrument types included in this study, including defined abbreviations to
distinguish them.

Abbreviation
Design

institution Seismometer Pressure gauge Shielding Instrument name

AB SIO T-Compact DPG Syntactic foam Abalone
B2 SIO T-240 DPG None SIO Unshielded Broadband
BA LDEO T-Compact APG None LDEO Unshielded APG Broadband
BD LDEO T-Compact DPG None LDEO Unshielded DPG Broadband
TRM LDEO T-Compact APG Steel Plates LDEO Trawl Resistant Mount OBS
AR WHOI T-Compact DPG None WHOI ARRA
BG WHOI CMG-3T DPG None WHOI BBOBS
KE WHOI CMG-3T DPG None WHOI KECK1

Note: 1. The WHOI KECK also includes a strong-motion accelerometer distinguishing it from the WHOI BBOBS.

subgroup:

pi =
√√√√ 1

n − 1

∑
j �=i

θi, j
2, (2)

where n is the number of spectra in the subgroup. We then calculate
the summed penalty for each subgroup, describing mean spectral
similarity, as the sum of the individual stations’ penalties:

P =
n∑
i

pi . (3)

Finally, the overall penalty function for a given subgrouping scheme
is the sum across all subgroups’ penalties.

Since the effect of noise is expected to differ between the Z, H1
and H2, and Z-corrected components, we examine each of these
independently. For consistency, we only analyse the 404 instru-
ments with four components that passed quality control. Since the
BBOBSs are randomly oriented on the seafloor, we treat the H1
and H2 components as two representations of the horizontal noise,
giving 808 spectra for this H component.

To start, we calculate three total penalties for the entire group of
BBOBSs described above (for Z, Z-corrected and H components).
This yields a baseline measure of spectral dissimilarity amongst all
stations in the data set. We then systematically divide the data set
into subgroups of stations defined by each metadata parameter. For
example, we use the ‘seismometer’ metadata parameter to construct
three subgroups of noise spectra defined by the parameter’s three
categorical subdivisions: T-240 s, CMG-3Ts and T-Compacts. We
calculate a penalty for each of the k subgroups, Pk, as above, and a
total penalty, P, as the summation of the three subgroup penalties.
This is done for each seismic component Z, H and Z-corrected,
in turn. In general, N in each subgroup varies with our choice
of metadata parameter, as discussed below. Subgroups with zero or
one station are excluded from the penalty calculation. The larger the
reduction in overall penalty function when stations are subdivided
according to a given metadata parameter, the more closely linked
that parameter is to noise spectral shape.

The metadata parameters we use to subdivide the spectra fall into
one of three types: (1) categorical, (2) numerical and (3) incomplete-
numerical. For categorical parameters, we use one subgroup for
each category. For numerical parameters, we utilize two subgroups,
separated by a cut-off value. We determine the optimal threshold
value by grid searching to obtain the cut-off that yields the two most
internally similar subgroups. Finally, for the numerical variables that
lack some data entries (i.e. semi-numerical; Figs S2b, d and f), we
place stations lacking numerical values into a separate subgroup,

and use the grid-search approach for numerical parameters for the
remaining stations, yielding three subgroups.

Since multiple parameters influence the noise spectra, the sub-
grouping scheme uses a hierarchical framework. First, we perform
the above analysis for each individual metadata parameter. We re-
fer to such single-parameter subgroups as a ‘1-layer’ analysis. For
parameters that result in relatively high levels of penalty reduction,
we then test the effect of producing additional subgroups by repeat-
ing this procedure two times, resulting in a ‘3-layer’ analysis. In
all cases, we evaluate success by computing the penalty reduction
value, which compares the summed penalty to the baseline penalty.

4 R E S U LT S

4.1 Average noise spectra

We present average power spectra for each BBOBS seismometer
component in Fig. 3. The Z component data are, on average, be-
tween the New High and Low Noise Model (NHNM and NLNM;
Peterson 1993). As expected, the H components have higher val-
ues, above or near the NHNM at all frequencies. At frequencies
lower than ∼0.1 Hz, the H components are on average ∼20–35 dB
noisier than the vertical components, likely due to bottom-current
noise (Webb 1998). The difference between components is less
pronounced at shorter periods. Both the secondary and primary
microseism are observed as clear peaks at ∼0.14 and ∼0.07 Hz,
respectively, where the secondary peak is on average higher than
the primary. However, the greatest variability between the spectra is
observed in the primary microseism band on both the Z and H com-
ponents. At frequencies <0.05 Hz, the infragravity signal manifests
as an additional peak on a subset of the vertical spectra. This peak
is not observed on the horizontal components since it is drowned
out by the stronger bottom-current noise. We also examined the
pressure spectra; however, significant variability between experi-
ments suggests a possible instrumentation or gain error for subsets
of BBOBSs. Pressure gauge response functions can be prone to
calibration error, although the cited variability is typically less than
the order of magnitude observed here (Yang et al. 2012; Doran et al.
2019). At least one of the apparently anomalous pressure spectra is
related to an error in the AACSE data that has since been reported
and resolved in the IRIS DMC (Figs S5 and S6). We note, however,
that gain errors do not affect our ability to perform compliance re-
moval, or interpret coherence or phase information between the Z
and P components.

As predicted, for the Z-corrected components, we observe a re-
duction in noise across all frequencies after the transfer function
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Figure 3. Power spectra for (a) Z, (b) H and (c) Z-corrected for all individual stations plotted as thin black lines. Solid and dashed dark blue lines indicate
mean and 2σ standard deviations, respectively, where dark purple indicates the original Z and H spectra (a and b), and light purple indicates the Z-corrected
spectra (c). The Z spectra is plotted on (c) for comparison. The Peterson (1993) high and low noise ranges are shown as the orange shaded area. (d) Difference
between the Z and Z-corrected spectra; positive values indicate lower values for the corrected data set. The purple line indicates the mean difference. The global
primary and secondary microseism peaks are plotted as thin blue lines for reference.

corrections were applied. On average, the corrected spectra are ∼5–
10 dB quieter than the original, but reductions as large as ∼40 dB
are observed. Maximal noise reduction is observed at ∼0.01, 0.07
and 0.14 Hz, corresponding to tilt and compliance, the primary mi-
croseism, and the secondary microseism, respectively (Fig. 3d). We
test the order of corrections, comparing the final spectra when com-
pliance is removed after tilt noise versus when tilt noise is removed
after compliance noise. To first order, no difference is observed, and
for the remaining analyses, Z-corrected spectra are calculated by
first removing tilt and then compliance noise. The spectra for the
seismic and pressure components grouped by experiment are shown
on Figs S3–S7.

4.2 Average coherences

For all BBOBS, we present the coherences between each horizontal
and the vertical component, H1-Z and H2-Z, and the coherence be-
tween the pressure and vertical components, P-Z (Figs 4a–c). On

the H1-Z and H2-Z pairs, we clearly observe high coherence val-
ues on a subset of the instruments at frequencies <0.1 Hz with no
clear dependence on water depth. This is consistent with tilt noise
on the Z component. We observe high P-Z coherence with a water-
depth-dependent high frequency limit that agrees with the predicted
cut-off for infragravity waves. This is consistent with compliance
noise on the Z component. We also observe a region of high P-Z
coherence at frequencies at and just above ∼0.14 Hz, consistent
with the secondary microseism. Another, more moderate, peak ob-
served at ∼0.07 Hz is consistent with the primary microseism. We
recalculate the H1-Z and H2-Z coherences after compliance noise
removal, and the P-Z coherence after tilt noise removal from the
Z component (Figs 4d–f). Since tilt is typically assumed to be the
larger noise source, we expect its removal should result in a more
visible compliance signal, and an increase in P-Z coherence. As
anticipated, we observe that the P-Z coherence tends to increase
after the removal of tilt noise at frequencies below the infragrav-
ity cut-off. However, we also observe an increase in the H1-Z and
H2-Z coherences for some instruments when we first remove the
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Figure 4. Coherences of the H1, H2 and P with the Z for each BBOBS compared with the water depth of the instrument. The red line indicates the predicted

infragravity cut-off frequency (f) as a function of water depth (d), using the equation f =
√

g
2πd (Bell et al. 2015); the green, dark blue and light blue lines

indicate the tilt cut-off (0.1 Hz), primary (0.07 Hz) and secondary (0.14 Hz) microseism peaks respectively. (a–c) Coherences calculated with the Z component;
(d–e) H1-Z and H2-Z coherences with the Z-compliance-corrected component; (f) P-Z coherence with the Z-tilt-corrected component.

compliance noise. This suggests that the two noise sources may
have similar amplitudes at some stations, in contrast to the assump-
tion that tilt noise is typically a much larger noise source (Bell et al.
2015). This is discussed further in Section 5.1.

Coherences between horizontal and pressure component pairs are
typically not investigated for BBOBS noise characterization and
removal, as incoherence is predicted (Crawford & Webb 2000). We
mostly observed H1-P and H2-P incoherence in our compiled data
set, with the exception of the shallowest stations, where coherences
were >0.5 near 0.1 Hz for both these component pairs (Fig. S8). Tilt
and compliance corrections for the Z component can still be used
in this frequency band at these shallow water instruments (Webb
& Crawford 2010; An et al. 2020), as long as this coherence is
accounted for.

4.3 Determinants of station noise

Our systematic calculation of the (dis)similarity between station
noise spectra after subdividing stations by each metadata parameter
yields quantitative estimates (in terms of ‘penalty’, the measure of
dissimilarity) of the relative importance of these features in con-
trolling noise properties. A higher penalty reduction suggests that a
given parameter is a better predictor of spectral characteristics. As
a baseline, the mean penalty per trace for the Z, Z-corrected and H
components is 4.94, 4.27 and 4.46, respectively. We report ‘penalty
reduction’ as a per cent deviation from these values.

4.3.1 1-Layer analysis

We first discuss results for our 1-layer analysis (Fig. 5a). The largest
penalty reduction is obtained when grouping stations by ‘Experi-
ment’ (a mean penalty reduction of 17.4 per cent, when averaging
over the Z, H and Z-corrected components). Next is ‘Instrument De-
sign’, which produced an average penalty reduction of 15.6 per cent,
and yields the largest penalty reduction for the Z component (19.8
per cent). However, neither of these parameters directly illuminate
the physical processes controlling seismic noise, as they strongly
co-vary with other metadata. For example, 14 (out of 18) experi-
ments involve only one type of instrument design and seismometer
(Table S1). Experiments typically occupy a small footprint (Fig. 1),
so intra-experiment variation in the environment is also limited.
Similarly, ‘Instrument Design’ covaries with ‘Seismometer’, ‘Wa-
ter Depth’ (e.g. TRM designs are only deployed in <1000 m) and
‘Pressure Gauge’. Nonetheless, the significant penalty reduction
under these two parameters demonstrates that experiment and in-
strument parameters collectively have substantial impact on noise
characteristics, reinforcing the need for careful deployment plan-
ning.

The ‘Seismometer’ parameter has the next greatest influence
on the noise spectra (Fig. 5a), reducing the total penalty by ∼10
per cent for both Z and H components. For the Z component, the
‘Seismometer’ subgroup spectra show different signatures of classic
BBOBS noise (Fig. 6). The sensor packages containing CMG-3Ts
display a power law (linear in log–log space) amplitude increase at
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Figure 5. Percentage penalty reduction in spectral angle for Z, H and Z-corrected for each metadata parameter subdivision. Larger reductions indicate more
similarity within the final subgroups. Parameters are sorted from left to right in descending order of their average penalty reductions. (a) Results for each
metadata parameter (1-layer analysis). (b) Results after subgrouping the BBOBS by ‘Seismometer’, then ‘Water Depth’, and then the labelled metadata
parameter (3-layer analysis). The 2-layer penalty reductions for ‘Seismometer’ and ‘Water Depth’ are shown by the solid lines.

Figure 6. Average spectra calculated from the resultant metadata subgroups based on ‘Seismometer’ and ‘Water Depth’. (a) The average Z spectra for the three
‘Seismometer’ subgroups: CMG-3T, T-Compact and T-240. (b) The average Z spectra for the two ‘Water Depth’ subgroups (grid search determined cut-off
depths indicated). (c) Same as (a), but for the H components. (d) Same as (b), but for the H components. (e) Same as (a), but for the Z-corrected component.
(f) Same as (b), but for the Z-corrected component.
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frequencies below 0.1 Hz, characteristic of tilt noise. By contrast,
sensors containing T-240 s and T-Compacts have more spectral cur-
vature and multiple inflection points at the same low frequencies,
which is characteristic of compliance noise (Bell et al. 2015). The H
spectra provide further insight (Fig. 6c). All three seismometer sub-
groups show bottom current noise (an ∼18 dB Hz–1-decade linear
increase in log–log space at low frequencies). However, the sub-
groups of H spectra are clearly distinguished by their noise notch
relative to their secondary microseism peak. The CMG-3Ts have
the least distinct noise notch (just ∼15 dB below the secondary
microseism), and are the noisiest instruments, on average, at long
periods, especially for horizontals. T-Compacts have an intermedi-
ate noise notch (∼20 dB below the secondary microseism), partially
influenced by the substantial primary microseism associated with
shallow water shielded instruments. T-240 s have a noise notch
∼30 dB below the secondary microseism, and have the quietest
horizontals at long periods. The average spectra for the Z-corrected
components for the CMG-3Ts and the T-Compacts are nearly iden-
tical; however, long period noise on the T-240 s remains ∼20 dB
quieter (Fig. 6e).

In the higher-frequency band (0.1–1 Hz) dominated by the sec-
ondary microseism, the T-240 s peak ∼10 dB lower than the other
sensors, on all components. This observation is somewhat surpris-
ing, as the secondary microseism peak is ubiquitous in all ocean en-
vironments and does not vary dramatically even with depth (Fig. 6).
We have considered the possibility that incorrect instrument gain(s)
may contribute to this apparent offset (Doran & Laske 2019), and
tested the potential impact of this error on our results by adding a
constant 10 dB to spectra that have an anomalously low secondary
microseism peak. The overriding conclusion of our tests is that
the quantitative subgroupings and associated interpretations are not
sensitive to gain uncertainty of this magnitude, but this may slightly
impact the absolute amplitude differences observed between differ-
ent seismometer packages. We discuss these metadata uncertainties
further below.

‘Water Depth’ has a similar level of influence on the noise spec-
tra as the ‘Seismometer’ parameter. These two categories are also
parsimonious in their numbers of subgroups (2 and 3, respectively).
‘Water Depth’ is particularly deterministic for Z component noise,
with a penalty reduction of 14.1 per cent, compared to 4.8 per cent
for H, and 4.0 per cent for Z-corrected (Fig. 5). Unlike for the ‘Seis-
mometer’ parameter, ‘Water Depth’ subgroups were determined by
grid search. The cut-off depths separating these subgroups are rel-
atively shallow for all three components, between ∼200 and 500 m
depth. This cut-off separates shallow versus deep noise environ-
ments, reflecting the distinctive signal of shallow water infragravity
waves in the 0.04–0.1 Hz band, likely due to direct wave loading
that overlaps with primary microseism frequencies, observed on all
components (Webb & Crawford 2010; An et al. 2021). Our depth
resolution is limited by the depths at which BBOBS were deployed;
thus, we report the maximum and minimum depths of the shal-
low and deep subgroups, respectively (Fig. 6). While this shallow
water signal is present on all components, compliance noise contin-
ues to influence the Z component at lower frequencies (<0.03 Hz),
following the characteristic depth dependence of infragravity waves
(Fig. 4). This explains the greater penalty reduction for the Z compo-
nent, relative to the H and Z-corrected components. A more detailed
investigation of the grid search for the Z component indicates two
depths where there are sharp changes in the penalty function: (1) the
200–500 m cut-off discussed above and (2) an inflection at ∼2600 m
water depth (Fig. S9). This may reflect the variable frequencies of
the compliance noise, and suggests broadly that categorization into

shallow, mid-depths and deep-water regimes is useful for predicting
overall BBOBS noise levels for a deployment.

The remaining parameters are less useful singular determinants
of noise characteristics, as they mostly have smaller penalty reduc-
tions (<5 per cent for each component). The penalty reductions for
the Z component using ‘Crustal Age’ and ‘Distance from Land’ are
somewhat higher; however, covariance with ‘Water Depth’ likely
explains this observation. Covariance amongst parameters is exem-
plified by the apparently perverse observation that ‘Pressure Gauge’
has some apparent predictive power for the noise characteristics of
the seismic components.

4.3.2 3-Layer analysis

For the 1-layer analysis, the power of any single parameter to pre-
dict noise characteristics is limited, with 6.5 per cent of variation
explained, on average. This low value indicates the multifactorial
controls on BBOBS noise. Therefore, we expand our analysis up to
three layers to determine which combinations of parameters yield
subgroupings with the most similar spectral characteristics. This
also helps us test which parameters (if any) have a secondary role
in regulating noise variability.

We start with a new baseline 2-layer analysis. We group stations
by ‘Seismometer’ (three subgroups), and then by ‘Water Depth’
(two subgroups), yielding a total of six subgroups (Fig. 7). These
two parameters were chosen on the basis of their high penalty re-
duction (Section 4.3.1), their parsimonious subgroups, their relative
lack of covariance with simpler parameters, and their clear physi-
cal relationships with noise, facilitating interpretation. The 2-layer
analysis yielded a 20 per cent average penalty reduction (horizontal
lines in Fig. 5b), with 27.4 per cent for the Z component, 19.2 per
cent for the H components, and 13.5 per cent for Z-corrected. As
above, the larger penalty reduction for the Z component reflects its
sensitivity to both compliance and tilt. This is further supported
by the relatively low penalty reduction (i.e. higher intergroup sim-
ilarity) for the corrected vertical component (Z-corrected), which
nominally has these effects removed. On the other hand, the fact
that the Z-corrected component still has non-zero penalty reduc-
tion demonstrates that factors other than tilt and compliance in-
fluence noise characteristics, or that these corrections do not work
perfectly. More sophisticated methods of noise removal, such as al-
gorithms that account for temporal variability of the transfer func-
tions, or iterative removal processes (Bell et al. 2015; Tian & Ritz-
woller 2017), might drive this ‘Z-corrected’ penalty reduction down
further.

We conducted independent grid searches for water depth cut-off
values in each seismometer subgroup. The optimal depth cut-off for
the T-Compact subgroup was between 354 and 430 m, very similar
to the shallow cut-off depths discussed above (Fig. 7). T-Compact
seismometers are used in the majority of the shielded BBOBS in-
struments designed for shallow water deployments <1000 m. By
contrast, the T-240 and CMG-3T subgroups have deeper appar-
ent cut-offs, between 2564–2687 m and 2785–2822 m, respectively.
This is similar to the secondary mid-depth cut-off noted above. Since
these subgroups do not include most of the shallow-water BBOBS,
they do not include characteristically very shallow (<500 m depth)
spectra, and so their intragroup grid searches find what we believe
to be an important local minimum in penalty at ∼2600 m. Close
investigation of the grid search results for the Trillium Compacts
(Fig. S9) reveals the same local inflection at ∼2600 m cut-off depth.
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Figure 7. Example of subgrouping by spectral similarity, showing the 2-layer analysis for Z spectra. These were first subgrouped by ‘Seismometer’, then
subgrouped by ‘Water Depth’. The seismometer types and threshold depths are indicated above each plotted subgroup. For each subgroup, the average spectrum
is plotted in black. Individual spectra are coloured according to their average spectral angle (i.e. penalty) from the other spectra in that subgroup. The same
vertical and horizontal scale is used for all plots. The number of spectra (n) and the average penalty (Pav) for each subgroup is given in the corresponding plots.

Finally, we perform a 3-layer analysis. Each of the six subgroups
from the 2-layer ‘Seismometer’ and ‘Water Depth’ analysis is fur-
ther subdivided according to each of the remaining parameters (e.g.
Figs 7, S10–12), and penalty reduction is measured. Aside from
‘Experiment’ (see caveats below), ‘Environment’ yields the highest
3-layer penalty reduction (25.8 per cent mean reduction, or 5.8 per
cent above the 2-layer baseline, for all components). This is likely
explained by differences in the frequency distribution of the sec-
ondary microseism across ocean basins (Babcock et al. 1994; Yang
et al. 2012). ‘Distance from Land’ is the numerical parameter that
provided the highest penalty reduction, approximately 5.5 per cent
above the 2-layer baseline for all components. While not included
in the main analysis, we test the effects of including ‘Water Depth’
again in the third layer. It results in similar penalty reductions as
‘Distance from Land’, which is likely a consequence of covariance
between water depth and distance from land.

Other numerical parameters in the 3-layer analysis yield lower
penalty reduction, but all improve upon the 2-layer baseline by >∼3
per cent. The fact that several, rather than any one, of these param-
eters control noise characteristics is highlighted by the particularly
high penalty reduction (9.9 per cent above the 2-layer baseline across
components) for ‘Experiment’ in the 3-layer analysis. As discussed
above, because individual experiments do not usually span large
portions of metadata space, this parameter effectively combines
many other parameters. Thus, it functions as a heuristic for the ex-
tent to which station noise is determined by all the station metadata
collectively. One way of looking at this is as a lower bound for the
aspects of station noise that are deterministically based on instru-
ment type and location, with the remainder of variability owing to
random site characteristics and spatiotemporally varying sea state.
A final point of note is that moving from the 1- to 3-layer hierarchy,
‘Instrument Design’ switches from providing the second highest to
the second lowest penalty reduction. Of course, instrument design
is strongly related to seismometer type and—via shielding—water

depth. However, this result indicates that having controlled for co-
variance with those factors, the design of the instrument is not itself
highly impactful on noise characteristics.

4.3.3 Significance of observations

Finally, we consider the possibility that we observe penalty reduc-
tion simply by chance. We test the significance of the observed
penalty reduction by computing the penalty reduction for 10 000
random subgroups of spectra. In each iteration, we keep the same
number of subgroups and number of stations in each subgroup as in
the true groupings analysed above. However, instead of assigning
stations into each subgroup according to their metadata parameters,
we assign them randomly. Taking the example of the 3-layer analy-
sis of ‘Seismometer’, ‘Water Depth’ and ‘Distance from Land’, the
random assignments yield a mean penalty per trace of 4.93 (the stan-
dard deviation is 0.02, and 95 per cent of the random iterations yield
a value above 4.89). This is only a 0.88 per cent penalty reduction
from the baseline (of 4.94), compared with the 32.7 per cent penalty
reduction when the data are grouped according to real parameters
(which is 88 standard deviations removed from the baseline). This
analysis establishes the strong significance of the relationships be-
tween metadata and station noise characteristics spectra (Fig. S13).

4.4 Frequency and amplitude variability

While the previous analysis focuses on causes of interstation vari-
ability in the noise spectra from 0.001 to 1 Hz, most seismic ap-
plications of BBOBS data use a band-limited frequency range. We
calculate mean noise levels in four commonly used frequency bands.
We focus on the following bands: (1) 0.1–1 Hz, centred over the sec-
ondary microseism band; (2) 0.05–0.1 Hz, centred over the primary
microseism band and traditional noise notch in BBOBS instruments,
both of which are relevant for ambient-noise analyses (e.g. Zha et al.
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2013; Russell et al. 2019; Yang et al. 2020), teleseismic body-wave
imaging (e.g. Wolfe et al. 2009; Hawley et al. 2016; Eilon & Abers
2017; Bodmer et al. 2018), scattered-wave imaging (e.g. Leahy
et al. 2010; Janiszewski & Abers 2015; Rychert et al. 2018; Mark
et al. 2021) and shear wave splitting (e.g. Collins et al. 2012; Eilon
et al. 2014; Bodmer et al. 2015; Lynner & Bodmer 2017); (3)
0.01–0.05 Hz, the primary band for teleseismic long-period body-
and surface wave velocity and attenuation imaging (e.g. Weeraratne
et al. 2007; Tilmann & Dahm 2008; Laske et al. 2011; Jin et al.
2015; Mazzullo et al. 2017; Cai et al. 2018; Janiszewski et al. 2019)
and (4) 0.005–0.01 Hz, of interest for very long-period surface wave
(e.g. Lin et al. 2016) and normal-mode (e.g. Bécel et al. 2011; Deen
et al. 2017) studies.

Based on the spectral angle analysis in the previous section, we
plot noise levels as a function of water depth, parsed according
to seismometer and instrument design (Fig. 8). This analysis com-
plements our spectral angle approach by comparing average abso-
lute amplitudes in discrete frequency bands, rather than amplitude-
agnostic spectral shape. Fig. 8 illuminates several points that should
be considered carefully during experiment design. First, there are no
clear trends in noise level as a function of water depth, seismometer
or instrument type in the secondary microseism band (0.1–1 Hz).
Most BBOBS tend to cluster near the NHNM (Peterson 1993) in
this range for both the vertical and horizontal components. Impor-
tantly, this is true even for the shallowest BBOBS, as this band is
largely above the frequencies at which compliance noise is present.
Some instruments display noise levels up to ∼50 dB quieter on av-
erage, but it is possible that instrument-gain uncertainty contributes
to these outliers (Doran & Laske 2019).

In the primary microseism band (0.05–0.1 Hz), Z and H compo-
nent noise levels increase for shallow BBOBS, consistent with direct
seafloor loading due to infragravity waves; this effect is reduced for
the Z-corrected component, but relatively high noise levels at the
shallowest depths persist even after corrections. For each compo-
nent, shallow water instruments have the highest noise levels in this
frequency range.

In the lower frequency bands (<0.05 Hz), the effect of com-
pliance noise, in addition to tilt, is observed on the Z compo-
nents, evidenced by the dependence on water depth. In contrast,
the H components as a whole do not show a clear dependence
on water depth in these bands; this may reflect the effective-
ness of instrument shielding in mitigating strong shallow seafloor
currents, and/or the fact that seafloor currents are pervasive at
all ocean depths. The CMG-3T seismometers show a stronger
trend of decreasing noise levels with water depth relative to the
other seismometers, indicating that this trend may depend on in-
strumentation; however, further analysis is needed to assess the
significance of this observation. The compliance and tilt correc-
tions are generally effective in these bands, and the Z-corrected
noise levels are largely distributed between the NLNM and the
NHNM.

On average, BBOBS containing T-240 seismometers have the
quietest noise levels at all frequency bands, but the differences
become more pronounced at lower frequencies. This observation
holds even accounting for the possibility of gain errors in some
T-240 deployments (Doran & Laske 2019). Importantly, this dif-
ference remains after tilt and compliance removal; that is, T-240 s
have, on average, the quietest Z-corrected components, with many
deployments showing noise characteristics just above the NLNM.
At frequencies lower than 0.1 Hz, BBOBS that contain a CMG-
3T seismometer show higher noise levels than BBOBS with other
sensors, particularly on the H components. The exaggeration of

this effect at frequencies lower than 0.1 Hz is consistent with the
presence of bottom current and tilt noise.

5 D I S C U S S I O N

Station metadata are strongly predictive of BBOBS noise character-
istics. When stations are grouped by metadata parameters, there is
substantially more similarity between spectra within those groups
compared to the similarity averaged across the whole data set (Figs 5
and 7). The water depth and seismometer type are the two most im-
portant factors that determine noise characteristics. The covariance
between seismometer and instrument design complicates under-
standing the relative roles of these two parameters. However, con-
sideration of these results may be useful during experiment design.
For instance, if analysis relies upon 0.05–0.1 Hz period teleseis-
mic S-p converted phases to evaluate mantle discontinuities, it is
ill-advised to deploy in <500 m water depths, as these signals will
likely be dominated by noise that persists after tilt and compliance
corrections. Similarly, the CMG-3T seismometer package seem to
be the most noise-prone seismometers across a range of environ-
ments. Here we further discuss sources of noise, implications for
data quality and traditional noise corrections, limitations of our
analysis and potential next steps for the BBOBS community.

5.1 Tilt and compliance noise

We have already suggested that the strong link between noise char-
acteristics, and the seismometer and water depth parameters is pri-
marily driven by variations in the tilt and compliance effects, respec-
tively. Here we investigate how coherence between components can
illuminate the relative roles of these noise sources as a function of
seismometer, water depth, and instrument design. Importantly, the
coherence is insensitive to any gain errors. We also discuss how
these may affect noise removal approaches.

Compliance noise is characterized by high average P-Z coher-
ence from ∼0.005 Hz (due to our instrument response removal
procedure) up to the theoretical infragravity frequency limit (Craw-
ford & Webb 2000). Fig. 4 shows very good agreement between the
high-frequency limit of P-Z coherence and the predicted cut-off
frequency at water depths spanning the full range from 0 to 6000 m.
Unsurprisingly, water depth is a primary factor in determining a
station’s compliance noise signature.

We estimate the presence of tilt noise from the maximum av-
erage coherence (in the range 0.005–0.035 Hz) between the H1-Z
and H2-Z components. We follow the method of Bell et al. (2015),
grid searching through horizontal component azimuths to find the
orientation (theoretically the physical tilt direction) that gives the
maximum coherence with the vertical (Htilt). Based on investiga-
tions of only the first year of Cascadia Initiative data, Bell et al.
(2015) suggested systematically higher tilt noise on the CMG-3T
seismometer systems, and that the tilt direction on these sensors
tended to preferentially align with the H1 component. We investi-
gate these properties further using our newly expanded data set.

First, we observe that Z-Htilt coherence is higher on instruments
with CMG-3T seismometers (Fig. 9), consistent with a higher
propensity for tilt noise (Bell et al. 2015). On average, the co-
herence is ∼0.8, above the typical benchmark value used for tilt
removal (Bell et al. 2015; Tian & Ritzwoller 2017). This higher tilt
noise could arise from higher susceptibility of these sensor packages
to current noise, and/or a tendency of these instruments to remain
slightly out of level (i.e. to have a Z component that is not perfectly
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Figure 8. Average power for the Z, H and Z-corrected components plotted as a function of water depth for each BBOBS in four frequency bands (ranges
shown on right). Symbols indicate the seismometer; colours indicate the instrument design (see Table 1 for more details). Grey shading indicates the average
Peterson (1993) high and low noise model range in each frequency band.

vertical). The analyses in Section 4.3 suggest that a combination of
these effects may be important. While all seismometer types show
similar low-frequency noise with a log-linear slope below 0.03 Hz
on the H components, indicative of bottom current noise, amplitudes
are systematically higher on CMG-3T systems (Fig. 6), suggesting
that these sensors, and/or the instrument packages housing the sen-
sors, are more strongly impacted directly by currents. In addition,
only this seismometer shows this log-linear trend on the Z compo-
nent (Fig. 6), suggesting that it more commonly transfers current
noise into Z-component tilt noise. We observe no systematic tilt
direction (Fig. 9), unlike the observations from Bell et al. (2015).

In contrast to this high tilt susceptibility, BBOBSs that use ei-
ther the T-Compacts or T-240 s have mean Z-Htilt coherences that
are <0.5, lower than typical benchmark values for useful tilt noise
removal (Bell et al. 2015; Tian & Ritzwoller 2017). The T-Compacts
offer the next highest Z-Htilt coherence after the CMG-3T seismome-
ters; of these, average coherence for the TRM and AB shielded
designs is particularly low, supporting the suggestion that shield-
ing protects against horizontal noise contamination. However, un-
shielded BBOBSs using the T-240 s also have comparably low
values, suggesting that these seismometers may simply be less sus-
ceptible to tilt noise.

Tilt noise is typically assumed to be higher amplitude than com-
pliance noise, but is not always present. Compliance noise is always
present but may be masked by strong tilt noise (Crawford & Webb
2000). It is therefore conventional to first remove tilt noise, which
should lead to an increase in the P-Z coherence allowing for sub-
sequent removal of the compliance noise. Our analysis (Fig. 9)

suggests this sequence of noise removal is particularly important
for stations with CMG-3Ts. On the other hand, Tian & Ritzwoller
(2017) find that both tilt and compliance noise interfere with each
other (that is H1-Z and H2-Z coherence increases after compliance
removal, and P-Z coherence increases after tilt removal), consistent
with relative similarity in their strength. They suggest that multiple
iterations of corrections may be appropriate in such cases. To in-
vestigate this systematically, we compare the P-Z coherence before
and after tilt correction (Fig. 10a), and H1-Z and H2-Z coherences
before and after compliance correction (Figs 10b and c). For con-
sistency between the two, we report the average coherence over
the frequency range where compliance effects are present, which is
inclusive of the range where tilt noise is expected for all stations.

As expected, the P-Z coherence increases for most instruments
after tilt noise removal (Fig. 10a), validating conventional noise re-
moval approaches (e.g. Wei et al. 2015; Accardo et al. 2017; Cai
et al. 2018; Janiszewski et al. 2019). This test also reinforces the
predominance of tilt effects on CMG-3T instruments: these seis-
mometers have the largest gains in P-Z coherence, but see essen-
tially no change in compliance-corrected H1-Z or H2-Z coherences
(Fig. 10b). In contrast, for instruments with Trillium seismome-
ters, we find increases in both the tilt-corrected P-Z coherence and
compliance-corrected H1-Z and H2-Z coherences. This suggests
that at individual instruments either the two noise sources are sim-
ilar in amplitude and interfere with one another, or that in some
cases compliance removal may improve the ability to distinguish
tilt noise on an instrument. A more detailed analysis of individual
instruments is necessary to distinguish between these end member
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Figure 9. The tilt orientation (Htilt), measured as a function of degrees counter-clockwise from H1, and the corresponding Htilt-Z coherence for each BBOBS.
Symbols and colours indicate seismometer and instrument design. Coloured lines show the average Htilt-Z coherence for each instrument design.

Figure 10. Comparison of coherences before and after tilt or compliance corrections. Symbols and colours indicate seismometer and instrument type; symbols
that plot above the black line indicate an increase in coherence after corrections, below the line indicate a decrease in coherence, and along the line indicate no
change. (a) Comparison of the P–Z and P–Z-tilt-corrected coherences. (b) Comparison of the H1-Z and H1-Z-compliance-corrected coherences. (c) Comparison
of the H2-Z and H2-Z-compliance-corrected coherences.

behaviours. In addition, recalculation of the tilt orientation after
compliance removal, and testing of iterative noise removal methods
may further help to determine properties and best practices related to
the noise and its removal, but is beyond the scope of this study (Tian
& Ritzwoller 2017). Furthermore, whether this behaviour remains

stationary throughout the deployment of an instrument remains un-
clear.

Finally, coherence actually decreases after noise removal at a
subset of the TRM and AB instruments (Fig. 10). These instruments
have mostly high (>0.5) P-Z coherences in the expected frequency
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range for compliance noise. We reiterate that these instruments also
have high H1-Z and H2-Z coherences in the primary microseism
band (Fig. 4); the lower (<0.5) values observed here stem from
averaging over the entire compliance frequency band, which is wider
than the microseism. For such a decrease in coherence to occur, the
noise across all four components of the BBOBSs must be coherent,
which is a property only observed on shallow water instruments.
With the exception of one AR instrument that may be affected by an
error, all instruments that have a decrease in coherence are deployed
in less than 280 m water depth.

5.2 Shallow water instruments

Shallow water BBOBSs have demonstrably distinct noise charac-
teristics (Fig. 6; Webb & Crawford 2010; An et al. 2021). Since this
is one of the strongest defining characteristics of observed BBOBS
noise, here we further investigate if these characteristics are present
on all shallow water instruments. Given the set of water depths cho-
sen as the optimal division between shallow and deep instrument
noise characteristics (e.g. Section 4.3), we suggest <500 m depth as
a conservative limit below which shallow water noise characteristics
should be expected. These spectra typically contain a high ampli-
tude peak on all components within the primary microseism band,
extending to the predicted infragravity wave cut-off frequency. This
peak is reduced, but not removed, by noise corrections (Fig. 6).
Within this band, pressure coherence with all seismic components
of the BBOBSs is high (Figs 4 and S8) due to both vertical and
horizontal loading of the seafloor from ocean waves directly above
the instrument (Webb & Crawford 2010).

Only three experiments in our data set deployed instruments at
depths <500 m: the Alaska-Aleutians Community Seismic Exper-
iment (AACSE), located offshore Alaska; the Cascadia Initiative
(CI), located offshore the northwest coast of the United States;
and SEGMeNT, located in Lake Malawi in Africa. The former two
share environmental similarities: the continental shelf adjacent to
the Pacific Ocean basin. Their noise characteristics are also simi-
lar (Fig. S14); the majority of these shallow BBOBSs contain the
expected high amplitude peak on vertical and horizontal compo-
nents at ∼0.07 Hz. In contrast, this feature is much weaker at the
Lake Malawi stations (Fig. S14), which record the primary ocean
microseism in the far field. Lake Malawi stations instead manifest a
strong noise peak at 0.3–1.6 Hz (Carchedi et al. 2022). This is likely
due to differences in the characteristic wavelength of wind-driven
waves in lacustrine versus oceanic settings. While microseisms are
generated at lakes, they have distinctively higher frequencies than
those generated in the oceans (Xu et al. 2017; Smalls et al. 2019)
explaining the strong 0.3–1.6 Hz peak (Carchedi at al. 2022). Lake
infragravity waves are also present (Accardo et al. 2017), seen from
0.02 to 0.06 Hz (Fig. S14).

Importantly, these differences may impact the application of dif-
ferent seismic analysis techniques on the data. For example, at Lake
Malawi the separation of the ocean microseism from both the lake-
generated microseism at higher frequency and lake infragravity
waves at lower frequency allowed Accardo et al. (2017) to observe
clear ambient noise cross-correlation signals between lake-bottom
and land seismometers in the 0.04–0.125 Hz range, including at
those instruments deployed at depths <500 m. By contrast, am-
bient noise cross-correlations from shallow-water instruments in
Cascadia had low signal-to-noise ratios at these frequencies (Tian
& Ritzwoller 2017; Janiszewski et al. 2019), due to local ocean-
generated waves swamping the microseism signal.

5.3 Limitations

Although this study constitutes the largest systematic review of
BBOBS noise characteristics conducted to date, there are important
limitations to the data set. Chief among these is that U.S. BBOBS
deployments using modern instrumentation have unevenly sampled
large swaths of the metadata parameter space. For instance, there
is more data from the Pacific Ocean than elsewhere, and a relative
paucity of stations atop thick sediments or at great distance from
coastlines (Figs S1 and S2). A corollary to this uneven sampling
is covariance in several station parameters, which makes it more
challenging to tease apart the individual influences of, say, shield-
ing versus shallow water on noise. Although we have attempted to
pick apart the most important parameters controlling noise char-
acteristics (Section 4.3), intrinsic covariation makes it impossible
to separate parameters completely. This is most clearly seen from
Fig. 5 where the ‘Experiment’ is the most important parameter deter-
mining noise characteristics, simply because the small geographic
footprint of most experiments means that other station parame-
ters are alike within each experiment, and most experiments use
a homogeneous instrument design. We also emphasize that certain
‘Instrument Designs’ only use one type of ‘Seismometer’ and vice
versa, making it difficult to determine if differences in noise prop-
erties arise from the overall instrument package or sensor design
in these cases. For example, T-240 sensors exist only in the B2 de-
sign, and CMG-3T sensors exist only in the BG and KE designs,
which are simply distinguished by the presence or absence of an
accelerometer, respectively. In addition, many of the individual sen-
sors and other components have been in use for over a decade; small
adjustments to instrument design and wear and tear may produce
variability in data quality that is difficult to assess. A small number
of colocated pilot deployments of BBOBS with different seismome-
ters or instrument designs in shallow and deep locations could test
the robustness of the results presented here. We also suggest that
codeployments should be an essential aspect of testing new BBOBS
designs whenever possible.

Our analysis is dependent on the accuracy of both data and meta-
data archived within the IRIS DMC, and one example of a colocated
deployment suggests that errors may exist. The PLUME experiment
(Doran & Laske 2019) utilized an intermixed array of T-240 and
CMG-3T sensors in relatively deep water. The individual seismome-
ter spectra (Figs S3 and S4) group into distinct clusters, with the
T-240 s offset to significantly lower power at all bands. Given the
similar deployment environment for these instruments, the simplest
interpretation for the offset is a gain error. Based on the secondary
microseism peak (0.1–1 Hz), the CMG-3Ts are biased ∼10 dB too
high, or the T-240 s are biased low. Doran & Laske (2019) analysed
this apparent bias and calculated station-specific gain corrections
of ×2 or ×4 for the PLUME T-240 observations.

Here, we take a more general approach to specifically assess
whether such issues could significantly impact our analyses. We
estimate that the T-240 data are biased approximately 10 dB low.
This is based on the observations that the average T-240 spectrum
is lower than our full-data set average in the secondary microseism
band by approximately this amount (Fig. 6), and that several older
T-240 experiments have low noise levels relative to more recent ex-
periments using those same instruments, including in the secondary
microseism band (Figs S3 and S4).

To test the impact of these gain uncertainties on our analysis, we
collect all the T-240 spectra from these suspect experiments col-
lected prior to 2011, and increase them by 10 dB. We then rerun
the spectral-angle analysis, and compare the resulting groupings to

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/233/1/297/6847166 by Syracuse U

niversity user on 31 January 2023



312 H.A. Janiszewski et al.

those presented above (Section 4.3). The dominant groupings are
unchanged, as are the majority of the details of the spectral charac-
teristics within each grouping. The weaker secondary microseism
peak in the average T-240 spectrum is no longer present, but the
T-240 spectrum at long periods remains lower than the other in-
struments, particularly for the Z and Z-corrected components. After
this adjustment, the difference between the H component noise on
the T-240 and T-Compact is minimal; however, both remain lower
than the observed noise levels for the CMG-3Ts. This evaluation
reassures us that our primary conclusions are robust in the face of
metadata uncertainty of the scale suggested by Figs S3 and S4.

Finally, the limited duration of standard OBS deployments (≤12
months) means that our analysis is subject to the idiosyncrasies of
experiment timing. As an example, the recording period for the HO-
BITSS experiment on the Hikurangi forearc largely overlapped the
2014–2016 El Niño event, confounding our ability to assess the nor-
mative noise characteristics of this particular margin. In this study
of overall trends, we have chosen not to consider seasonal variability
of noise, which can be substantial (e.g. Stutzmann et al. 2009; Grob
et al. 2011), and in addition we do not consider secular changes in
noise with time (cf. Bell et al. 2015). Further, this study uses only
instruments from U.S.-funded BBOBS deployments; many other
designs exist that we have not included here. Their future inclu-
sion would likely mitigate covariances between metadata parame-
ters (particularly between seismometer and instrument design), and
yield a wider geographic footprint.

As the marine geophysical community plans for long-term
BBOBS observatories (Kohler et al. 2020), it would be worthwhile
to invest resources in exploring the noise characteristics of these
undersampled regions of metadata parameter space. The data set
presented in this study assists in framing noise domain gaps that
future pilot experiments could fill.

6 C O N C LU S I O N S

We have computed representative noise spectra for 551 broad-band
BBOBS stations spanning 18 experiments deployed between 2005
and 2019, including seismic components and pressure gauges. We
also calculated cross-spectral properties (admittance, phase, coher-
ence) that help reveal and quantify seismic noise induced by bottom
currents and infragravity waves. The resultant data set constitutes
the most comprehensive sampling of noise characteristics at seafloor
stations to date. Our analysis supplies a framework for BBOBS users
to compare and assess the noise characteristics of individual data
sets, better anticipate noise characteristics for newly acquired data,
and provide a baseline catalogue that will continue to grow in detail
and utility as the marine geophysics community expands BBOBS
sampling of the world’s diverse seafloor.

By grouping noise spectra based on metadata parameters, we
demonstrate that there are significant systematics to BBOBS noise
characteristics. The most important determinants of noise character-
istics are the seismometer (which strongly covaries with instrument
design), and the water depth at which it is deployed. Accounting for
other factors, BBOBSs with CMG-3T seismometers seem to have
higher low-frequency noise than average, and those with T-240
sensors have lower noise levels, particularly on the vertical compo-
nents. CMG-3T instruments have higher tilt noise on the vertical
components, most clearly seen at long periods, and overall, more
noisy horizontals. Although noise is correlated with seismometer
(and by extension instrument design) type, we find no systematic

orientation of the tilt noise, suggesting that none of the BBOBSs’
engineering creates a bias in tilt direction.

We have shown, for the first time, that the theoretical depth-
frequency limit for seafloor compliance is closely matched by the
data spanning 0–6000 m in water depth. BBOBS deployed on con-
tinental shelves in shallow water (<500 m) have systematically dif-
ferent noise properties, characterized in particular by higher noise
in the primary microseism band on all four components. The excep-
tion is shallow water lake instruments, which have low noise in the
global microseism band, and a unique ∼0.4 Hz peak. This and other
departures from our main groupings will need to be re-evaluated
in the future as new data sets provide wider sampling of station
properties.

We found that grouping by experiment yielded the highest sim-
ilarity of spectra, indicating that the combination of station pa-
rameters (similar instrumentation, geographic footprint, etc.) de-
terministically controls overall BBOBS noise. This holds promise
for informed experiment planning; overall noise properties are sta-
tion contingent, but largely predictable. Despite this, we recognize
that our analysis is incomplete, limited by uneven global sampling,
and covariance between important metadata parameters. Key fu-
ture work may include systematic analysis of seasonal and other
temporal variability, expansion of the data set to include additional
instrument designs and deployment locations, including non-U.S.-
funded deployments, buried or cabled instrumentation, and testing
the effects of iterative noise removal procedures.
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erties are available in the online supplementary material. Addition-
ally, the calculated noise spectra and cross spectra, and metadata
table is archived at Dryad (https://doi.org/10.25349/D90042). The
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