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ABSTRACT
The non-double-couple (non-DC) components of the moment tensor provide insight into
the earthquake processes and anisotropy of the near-source region. We investigate the
behavior of the isotropic (ISO) and compensated linear vector dipole (CLVD) components
of the moment tensor for shear faulting in a transversely ISO medium with an arbitrarily
oriented symmetry axis. Analytic formulas for ISO and CLVD depend on the orientation of
the fault relative to the anisotropy symmetry axis as well as three anisotropic parameters,
which describe deviations of the medium from isotropy. Numerical experiments are pre-
sented for the preliminary reference Earth model. Both ISO and CLVD components are zero
when the axis of symmetry is within the fault plane or the auxiliary plane. For any orien-
tation in which the ISO component is zero, the CLVD component is also zero, but the oppo-
site is not always true (e.g., for strong anisotropy). The relative signs of the non-DC
components of neighboring earthquakes may help distinguish source processes from
source-region anisotropy. We prove that an inversion of ISO and CLVD components of
a set of earthquakes with different focal mechanisms can uniquely determine the orien-
tation and strength of anisotropy. This study highlights the importance of the ISO com-
ponent for constraining deep slab anisotropy and demonstrates that it cannot be
neglected.

KEY POINTS
• Non-double-couple moment tensor components of a

fault in transverse isotropic medium are derived analytically.
• All non-double-couple components are zero when the

symmetry axis of the anisotropy is within the fault plane.
• The explosive and compensated linear vector dipole com-

ponents uniquely determine the deviation from isotropy.

Supplemental Material

INTRODUCTION
Shear faulting in a homogeneous isotropic (ISO) medium is
described by the double-couple (DC) model with no volume
change (Burridge and Knopoff, 1964). In reality, moment ten-
sors often comprise additional non-DC components including
an ISO (or “explosive-implosive”) term and a so-called com-
pensated linear vector dipole (CLVD). Such departures from
pure DC behavior are commonly observed in earthquake cata-
logs, including the Global Centroid Moment Tensor (CMT)
catalog, where a nonzero CLVD is routinely observed but
the ISO component is constrained to be zero (Ekström et al.,
2012). One class of explanations attributes these components
to the earthquake source itself, including tensile faulting
(Robson et al., 1968; Ross et al., 1996; Vavryčuk, 2001,
2002, 2011); fluid injection (Kanamori et al., 1993), complex

rupture dynamics involving two or more subfaults (Kuge
and Kawakatsu, 1993; Frohlich, 1994); and transformational
faulting due to a phase transition (Vaišnys and Pilbeam,
1976; Kirby, 1987; Kirby et al., 1991; Wiens et al., 1993;
Green and Houston, 1995). A second class of explanations
attributes them to elastic anisotropy in the source region
(Kawasaki and Tanimoto, 1981; Julian et al., 1998;
Vavryčuk, 2004, 2005; Vavryčuk et al., 2008; Li et al., 2018).
We focus here on this case.

Starting in the 1960s, elastic anisotropy of earth materials
has been intensively studied in many contexts (Anderson,
1961; see also Kawakatsu, 2016a,b); its fundamental properties
are described in many texts (e.g., Love, 1927; Nye, 1985; Aki
and Richards, 2009). Anisotropy due to the lattice preferred
orientation (LPO) of olivine has been observed in the oceanic
lithosphere (Hess, 1964; Morris et al., 1969; Raitt et al., 1969;
Nishimura and Forsyth, 1989; Ekström and Dziewonski, 1998;
Lin et al., 2016; Russell et al., 2019) and deeper mantle
(Anderson and Dziewonski, 1982; Ekström and Dziewonski,
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1998; Nettles and Dziewonski, 2008, French and Romanowicz,
2014; Moulik and Ekström, 2014; Eddy et al., 2019). Because
seismic anisotropy is ubiquitous, some earthquakes can occur
in an anisotropic source zone.

Our understanding of earthquake source processes and
crust and mantle anisotropy are intimately linked through
the non-DC components of the moment tensor. As
Vavryčuk (2004) has shown, these components are easily cal-
culated, given a fault with a particular orientation and a
medium described by an anisotropic elastic tensor with ortho-
rhombic symmetry (i.e., 12 independent parameters). Here, we
build upon this previous framework by considering a higher
symmetry form of anisotropy—transverse isotropy (TI)—that
is fully described by only seven parameters and is commonly
invoked in the seismological literature. The relatively simple,
yet seismically relevant, TI system offers insight into the oth-
erwise complex relationships between the non-DC compo-
nents of the moment tensor. Although we focus here on TI
media, the general methodology that we employ extends also
to lower symmetry systems of anisotropy (e.g., orthorhombic).

In this article, we treat shear faulting in a TI medium and
systematically explore variation of the ISO and CLVD compo-
nents of the moment tensor with varying fault orientations.
Although TI is simple, it has proved extremely powerful in
describing average Earth materials and has been invoked in
many studies of mantle anisotropy (e.g., Backus, 1965;
Dziewonski and Anderson, 1981; Montagner and Tanimoto,
1991; Gu et al., 2005; Nettles and Dziewonski, 2008;
Beghein et al., 2014; Moulik and Ekström, 2014). We first
derive analytical solutions for both ISO and CLVD compo-
nents of the moment tensor for varying fault geometry.
Second, we present numerical calculations for an arbitrarily
oriented fault in the real Earth and demonstrate the impor-
tance of accounting for both non-DC components when infer-
ring anisotropy strength and orientation.

METHODS
The intensity of ISO and CLVD components are controlled by
the relative orientation of the anisotropic material and the
fault. This orientation is described by two Euler angles because
the medium is rotationally invariant about the TI symmetry
axis. In our approach, we fix the orientation of anisotropic
material and vary the orientation of the fault.

We assume a TI medium with a symmetry axis (a axis) in
the vertical direction. Such a medium is conventionally para-
meterized with five “Love constants” A, C, F, L, and N (e.g.,
Dziewonski and Anderson, 1981; Nye, 1985; Nettles and
Dziewonski, 2008). A sixth parameter η is sometimes used
to quantify the ratio η � F=�A − 2L�. In the ISO case,
A � C � λ� 2μ, L � N � μ, F � λ, and η � 1, in which λ
and μ are the Lamé parameters. The elastic tensor cijpq can
be formed from the Love constants, starting with
c1111 � c2222 � A, c3333 � C, c1313 � c2323 � L, c1212 � N ,

c1122 � A − 2N , and c1133 � c2233 � F (Musgrave, 1970; Aki
and Richards, 2009). The strength of anisotropy can be quan-
tified by possibly large deviations ΔC, ΔN , and ΔF, with
C ≡ A� ΔC, N ≡ L� ΔN , and F ≡ �A − 2N� � ΔF. The
medium is ISO if ΔC � ΔN � ΔF � 0.

In the reference orientation, the fault lies in the vertical
�x; z� plane and the slip is in the x direction (Fig. 1).
Consequently, the fault-plane normal is v � � 0 1 0 �T
and the slip direction is u � � 1 0 0 �T. The T, P, and B axes
are parallel to �u� v�, �u − v�, and w ≡ u × v, respectively.
The plane defined by reversing the roles u and v is convention-
ally called the “auxiliary” plane. We refer to the plane contain-
ing the P and T axes as the “equatorial plane” and the plane
containing the P and B axes as the “meridional” plane. The
rupture on the fault can be described by the fault tensor F�0�

pq ≡
�upvq � uqvp� (Vavryčuk, 2004; Aki and Richards, 2009). It can
be shown that vectors parallel to the T, P, and B axes are
eigenvectors of F�0�, with eigenvalues of λ�1� � 1, λ�2� � −1,
and λ�3� � 0, respectively. Consequently, det�F�0�� �
λ�1�λ�2�λ�3� � 0. The fault is rotated into other orientations
by applying a rotation matrix R, that is, Fpq � RpiRqjF

�0�
ij (in

which summation over repeated indexes is implied).
The moment tensor M equivalent to the fault is

Mij � u
̱
Ωmij with mij ≡ cijpqFpq, in which u

̱
is the average slip

on the fault and Ω is the fault area (Aki and Richards, 2009).
The relative sizes of components depend only onm and not on

(a) (b)

Figure 1. (a) Geometry of the fault plane (vertical) and auxiliary plane (hori-
zontal). The two planes intersect along the null axis n̂. The axis of transverse
isotropy (TI) â is initially within the fault plane and perpendicular to the null
axis. A rotation of the fault by an angle α about the x axis moves the axis â
of TI (arrow parallel to ẑ) off the fault plane. A rotation of the fault by an
angle β about the y axis keeps the â axis within the fault plane.
(b) Simplified sketch showing the �x; z� plane and highlighting the fault-slip
directions (thin arrows) and the P and T axes (arrows labeled P and T). The
color version of this figure is available only in the electronic edition.
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the multiplicative factor of u
̱
Ω (which can be set to unity). A

purely ISO moment tensor is diagonal, m � XI, in which I is
the identity matrix (Aki and Richards, 2009). The amplitude X
is negative for an implosion and positive for an explosion. The
amplitude X associated with an arbitrary moment tensor is
X ≡ tr�m�. The deviatoric part of the moment tensor,
Δm � m − tr�m�I, has zero trace. The CLVD is defined by
eigenvalues −½λ�p� � −½λ�q� � λ�r�, in which �p; q; r� are

permutations of (1,2,3) (Frohlich, 1994; Vavryčuk, 2015).
The eigenvector v�r� associated with λ�r� is the axis of symmetry
of the CLVD. When it is positive, we will refer to the CLVD as
“dilatational along its axis,” and when it is negative, we will
refer to it as “compressional along its axis.” The smallest
CVLD that can be subtracted from Δm to produce one iden-
tically zero eigenvalue is −½λ�p� � −½λ�q� � λ�r� � λ�min�, in
which λ�min� is the eigenvalue with the smallest absolute value.
Consequently, the amplitude V of the CLVD component is
quantified by V ≡ λ�p� with p � argminijλ�i�j.

We derive the fault matrix F�β� by analytically rotating the
fault by angle β and derive the moment tensor m�β� by ana-
lytically contracting the fault tensor with the elastic tensor. We
then derive amplitudes X�β� and V�β� of the ISO and CLVD
components, respectively, by analytically solving the cubic dis-
criminant equation. All derivations have been verified through
a comparison with numerical calculations and are presented in
the supplemental material to this article.

RESULTS
Property 1. The ISO component is zero when the TI symmetry
axis is within the fault plane. Rotating the reference fault by
angle β about the y axis keeps the TI symmetry axis within
the fault plane. Defining c ≡ cos β and s ≡ sin β, the moment
tensor is found to be

EQ-TARGET;temp:intralink-;df1;41;173F�β� �
0 s 0
s 0 c
0 c 0

2
4

3
5 and m�β� �

0 2sN 0
2sN 0 2cL
0 2cL 0

2
4

3
5:

�1a; b�
The diagonal elements of m�β� are all zero, implying that
X�β� � 0 for all β.

Property 2. The CLVD component is zero when the TI sym-
metry axis is within the fault plane. Because the diagonal

elements of Δm�β� are identically zero, its determinant is zero
for all β. Consequently, it must have at least one zero eigen-
value and V�β� � 0 for all β.

Property 3. The ISO component is X�α� �
−�ΔF � ΔC� sin 2α when the TI symmetry axis is within
the equatorial plane. Rotating the reference fault by angle α
about the x axis keeps the TI symmetry axis in the equatorial
plane and aligns the P axis with the a axis when α � π=4:

EQ-TARGET;temp:intralink-;df2;41;618

F�α� �
0 0 0

0 sin 2α cos 2α

0 cos 2α − sin 2α

2
64

3
75

m�α� �
−ΔF sin 2α 0 0

0 �2L� 2ΔN − ΔF� sin 2α 2L cos 2α

0 2L cos 2α �−2L − 2ΔN � ΔF − ΔC� sin 2α

2
64

3
75: �2a; b�

The ISO component is calculated as tr�m� �
−�ΔF � ΔC� sin 2α.

Property 4. For weak anisotropy, the CLVD component is
V�α� � −�ΔC − 2ΔF� sin 2α when the TI symmetry axis is
within the equatorial plane (but can depart significantly from
this value for strong anisotropy). The discriminant
det�Δm�α� − λ� � 0 has roots:
EQ-TARGET;temp:intralink-;df3;308;407

2λ�1� � −g � �g2 − 4h�½
2λ�2� � −g − �g2 − 4h�½

λ�3� � 1
3
�ΔC − 2ΔF� sin 2α; �3�

with

EQ-TARGET;temp:intralink-;df4;308;323

g≡
1
3
�ΔC−2ΔF�sin2α

g2 −4h≡ �4L�4ΔN −2ΔF�ΔC�2 sin2 2α�16L2 cos2 2α: �4�

In the isotropic limit, in which �ΔC;ΔF;ΔN� → 0, we find
λ�1� → 2L, λ�2� → −2L, and λ�3� → 0. Hence, for weak anisotropy,
λ�3� is the eigenvalue with the smallest absolute value,
V � λ�3� and V varies sinusoidally along the equator, attain-
ing the extreme value of �ΔC − 2ΔF� at α � π=4. In this case,
the ratio R � V=X � �2ΔF=ΔC − 1�=�ΔF=ΔC � 1� depends
only on the ratio ΔF=ΔC and is constant along the equator.
For arbitrary anisotropy, but for α � π=4, we find that

EQ-TARGET;temp:intralink-;df5;308;161

λ�1�

λ�2�

λ�3�

2
4

3
5 �

�2ΔC − ΔF� � j4L� 4ΔN − 2ΔF � ΔCj2
�2ΔC − ΔF� − j4L� 4ΔN − 2ΔF � ΔCj2

�ΔC − 2ΔF�

2
4

3
5:
�5�

Depending upon the values of the Love constants and the mag-
nitude of anisotropy, either λ�1� or λ�2� may have an absolute
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value that is smaller than jλ�3�j. When this “eigenvalue switch-
ing” occurs, V will equal that eigenvalue. Irrespective of
anisotropy strength, λ�3� is the eigenvalue with the smallest
absolute value when the rotation angle α is small (that is,
the fault plane is close to α̂). Therefore, in the limit α → 0,
R � �2ΔF=ΔC − 1�=�ΔF=ΔC � 1�. Furthermore, this is the
extreme value of R because the switch to a different eigenvalue
only occurs when the absolute value of that eigenvalue is closer
to zero, that is, jVj decreases.

Property 5. The ISO component is X � −�ΔF � ΔC� sin2 α
when the TI symmetry axis is within the meridional plane. We
first orient the reference fault such that the meridional plane
aligns with the �y; z� plane. We then rotate it by an angle α
about the x axis, which keeps the a axis aligned with the
meridional plane. Defining c ≡ cos α and s ≡ sin α, we get

EQ-TARGET;temp:intralink-;df6;53;228F�α� �
1 0 0
0 −c2 cs
0 cs −s2

2
4

3
5; �6�

EQ-TARGET;temp:intralink-;df7;53;133m�α��
2L�2ΔN−ΔFs2 0 0

0 −2Lc2−2ΔNc2−ΔFs2 2Lcs
0 2Lcs −2Ls2−2ΔNs2�ΔFs2−ΔCs2

2
4

3
5: �7�

The ISO component reads tr�m� � −�ΔF � ΔC�s2.

Property 6. When anisotropy is weak and the TI symmetry
axis is within the meridional plane, the CLVD component is

EQ-TARGET;temp:intralink-;df8;320;718

V � −ΔN sin2 2α� 1
3
�ΔF � 2ΔC�γ�α�

with γ�α� ≡
�
−
3
2

���
1
6

�
�

�
2
6

�
cos 2α −

�
3
6

�
cos2 2α

�
: �8�

This result is achieved in the following steps: first, the cubic
discriminant is calculated as det�Δm�α� − λ� � 0; second,
one solution is identified as λ�1� � Δm11, allowing for the iden-
tification of the quadratic equation solved by λ�2� and λ�3�;
third, the quadratic equation is solved; and fourth, the square
root in the expressions for the smallest eigenvalue, say λ�3�, is
expanded in a Taylor series to allow for the cancelation of zero-
order terms and to achieve a result that depends only upon
Love constant deviations.

For weak anisotropy, V�α� is a linear combination of two
functions, sin2 2α (Fig. 2a) and γ�α� (Fig. 2b). Using the ratio
M ≡ 3ΔN=�ΔC − 2ΔF� as a measure of the relative size of the
two terms, we find that for weak anisotropy and jMj ≫ 1, V�α�
attains its extreme value at a � π=4 (at which point
sin2 2α � −1). Also, for weak anisotropy, but for jMj ≪ 1,
V�α� attains its extreme value at α � π=2 (at which point
γ � 1). For intermediate values of jMj, the location of the
extreme value varies as is shown in Figure 2c.

As α → 0, both V and X vary as α2. Consequently, the ratio
R � V=X is, in the limit, a nonzero constant:

EQ-TARGET;temp:intralink-;df9;320;380R � −4ΔN � �4=3��ΔF −½ΔC� � 2L−1�ΔN�2
− 1

3 �ΔF � ΔC� � O�L−2�:

�9�

Property 7. For a general rotation described by angles �θ;φ�,
the amplitude of ISO is X�θ;φ� � −�ΔF � ΔC� cos�2θ� sin�φ�.
Starting with the fault in its principal coordinate system (as in
property 5), we rotate the fault tensor by an angle of θ about
the z axis, followed by an angle of φ about the new x axis. We
then analytically evaluate tr�m� � cppijFij. The algebra is sim-
plified by writing cppij � c�0�ppij � c�1�ppij, in which c�0�ppij depends
only upon the Love constants and c�1�ppij depends only upon their
deviations. Then, tr�m� � c�1�ppijFij because c

�0�
ppijFij � 0. The ISO

component X�θ;φ� depends only upon ΔF and ΔC but not
upon ΔN and is identically zero when ΔF � ΔC � 0.

(a)

(b)

(c)

Figure 2. (a) The function at sin2�2α� as a function of angle α. (b) The func-
tion at γ�α� as a function of angle α. (c) The angle at which M sin2�2α� �
γ�α� attains its extreme value, as a function ofM. See the Results section for
further discussion.
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Example. Our example starts with a TI medium from the
Dziewonski and Anderson (1981) preliminary reference
Earth model (PREM), evaluated at 100 km depth and for a
reference frequency of 1 Hz. The PREM has the following
constants: vPREMpV � 7:94 km=s, vPREMpH � 8:14 km=s,
vPREMsV � 4:41 km=s, vPREMsH � 4:54 km=s, ηPREM � 0:93, and
ρPREM � 3373 kg=m3. This model is characterized by about
2.3% P-wave anisotropy and represents a weak anisotropy case.
The positive value of −�ΔF � ΔC� ≈ 3:0 implies that X is pos-
itive (explosive) when the T axis aligns with the TI symmetry
axis. Its low value of jMj ≈ 0:8 implies that the extreme values
of V will occur near the P and T axes.

For angles �α; β�, we rotate the fault tensor F0. Then, we
compute the moment tensor m, its trace, the absolute smallest
eigenvalue of Δm, and the ratio R (Figs. 3 and 4). Both the
overall behavior of V , X, and R and their numerical values
are observed to follow the predictions of the analytic formulas.
In particular, V � 0 and X � 0 when the a axis is in the plane
of the fault, as predicted. Furthermore, both V�α; β� and
X�α; β� have a simple, sinusoidal variation in α.

We then boost the amplitude of PREM’s seismic anisotropy
by a factor of 10 (without changing ρ or η) to achieve a strong

anisotropy case (Fig. 5).
The positive value of
−�ΔF � ΔC� ≈ 13:4 implies
that X is positive (explosive)
when the T axis aligns with
the TI symmetry. As in the
weak anisotropy case, both
V � 0 and X � 0 when the a
axis is in the plane of the fault.
However, although X, as in the
previous case, has a sinusoidal
variation in α, the behavior of
V becomes more complicated.
We have verified that this
complex behavior is due to
eigenvalue switching; for this
reason, no inference can be
made based on M alone. In all
cases, the numerical values of
quantities closely match their
analytical predictions.

DISCUSSION
When earthquakes occur on a
set of faults with different ori-
entations in a homogeneous
anisotropic medium, measure-
ments of X and V can be used
to determine the intensity
and direction of anisotropy
(Vavryčuk, 2004, 2005). This

type of inversion has recently been applied to subduction-zone
earthquakes (Li et al., 2018), which assume a constrained form
of tilted TI. The inverse problem is complex, especially for gen-
eral anisotropy, because of the complicated relationship
between the observed X and V and the 21 unknown elastic
parameters cijpq. We focus here on a “reduced” problem of a
TI inversion, with the expectation that it will provide some
insight into the structure of more complicated cases.

In TI media, measurements of X and V can uniquely deter-
mine the direction of the symmetry axis and three anisotropy
parameters that quantify its strength. The orientation of the
a axis is detected by matching the observed angular variation
of the data to the simple and highly symmetrical predicted pat-
terns. In principal, only four earthquakes are needed to find the
axis of the predicted X�θ;φ� pattern and to determine the linear
combination �ΔC � ΔF�. These same data also are sufficient (at
least for weak anisotropy) to distinguish the two V�θ;φ� pat-
terns and the linear combinations ΔN and �ΔF � 2ΔC�.
Consequently, only ≥4 earthquakes are required to determine
ΔC, ΔF, and ΔN in an inversion that uses both X and V .

The Global CMT catalog (Ekström et al., 2012) is a primary
source of information on earthquake moment tensors on the

(a) (b)

(c)
(d)

4

2

0

–2

–4

–1

–1.5

–2

2

0

–2

Figure 3. Results for the weak anisotropy case (f � 1). (a) The fault plane is initially vertical, the auxiliary plane is
initially horizontal, and the n axis n̂ is initially parallel to the x axis. The fault is tilted from the vertical by a rotation β
around the y axis and a rotation α around the x axis. Note that for α � 0, rotations around β leave the n axis in the
fault plane. (b) Stereographic plot of the strength V of the compensated linear vector dipole component. (c) The
strength X of the isotropic (ISO) component. (d) The ratio, R � V=X. See the Results section for further discussion.
The �α; β� that rotates the T axis (P axis) into alignment with the axis of TI is marked with circles. The absolute
maximum element of the moment tensor is ∼120, so the X and V components contribute about 2% and 4% of the
total moment, respectively. The color version of this figure is available only in the electronic edition.

Volume 110 Number 3 June 2020 www.bssaonline.org Bulletin of the Seismological Society of America • 1129

Downloaded from https://pubs.geoscienceworld.org/ssa/bssa/article-pdf/110/3/1125/5048589/bssa-2019319.1.pdf
by Columbia University user
on 04 June 2020



global scale, although regional
seismic networks can provide
important measurements on
smaller scales (Stierle,
Bohnhoff, et al., 2014; Stierle,
Vavryčuk, et al., 2014).
However, the Global CMT
provides estimates of ampli-
tude V only. Because of poor
constraints from the long-
period data, X is set to zero
in the inversion. The question
is how to deal with the lack
of information about X, but
still including the prior infor-
mation that they are expected
to be small. One possibility is
to require Xk � 0 for all k
earthquakes, or alternatively,
to seek a solution that mini-
mizes

P
kX

2
k. However, this

condition is equivalent to
requiring ΔC � ΔF � 0,
which although mathemati-
cally sufficient to resolve the
nonuniqueness, may not corre-
spond to anisotropy common
in the actual Earth; PREM,
for example, does not meet this
condition. However, more
realistic prior information
would seem to require knowl-
edge of the mechanism by
which the anisotropy is pro-
duced (e.g., by olivine LPO,
thin layers, fluid-filled cracks,
and so on; Fig. 6).

This study highlights the
importance of accurately deter-
mining the ISO component of
the moment tensor for under-
standing deep earthquakes. We
show that, for shear faulting in
a TI medium, X can be posi-
tive, negative, or zero depend-
ing on fault orientation. In
contrast, phase transition
hypotheses for deep earth-
quakes within ISO slabs predict
negative (implosive) X due to
volume reduction (Vaišnys
and Pilbeam, 1976; Kirby,
1987; Kirby et al., 1991;

(a) (b)

(c) (d)

Figure 4. Same as Figure 3, except for a different reference orientation of the fault. The null axis n̂ is initially vertical
and aligned with the â axis. The x axis and y axis are 45° between the fault plane and auxiliary plane. This fault is
then tilted, via a rotation β around the y axis followed by a rotation α around the x axis. See the caption of Figure 3
for further information. The color version of this figure is available only in the electronic edition.

(a) (b)

(c) (d)

Figure 5. Same as Figure 3, except for the strong anisotropy case (f � 10). The absolute maximum element of the
moment tensor is ∼90, so the X and V components contribute about 15% and 45% of the total moment,
respectively. See the Results section for further discussion. The color version of this figure is available only in the
electronic edition.
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Wiens et al., 1993; Green and Houston, 1995). However, a
combination of the two mechanisms—a phase transition-
induced earthquake within an anisotropic slab—could con-
ceivably produce a net explosive mechanism. Some progress
has been made in measuring X for very large earthquakes
(e.g., Okal et al., 2018), but more estimates from moderate-
sized earthquakes will be necessary to distinguish source region
anisotropy from translational faulting.

A key result is that fault orientations that lead to X � 0 also
lead to V � 0, but not vice versa. This implies that X and V
measurements are at least weakly correlated, which may in
turn influence their statistical description. However, given that
X and V depend onΔC,ΔF, andΔN in different ways and that
this difference is greatest for high degrees of anisotropy, this
correlation may be difficult to detect in real datasets.

For weak anisotropy, the patterns of variation of X and V
with fault orientation are very simple. Their smooth variation
with angle implies that X and V measurements from just a few
earthquakes—at least four, but more realistically a few dozen—
are needed to map out the pattern and hence to determine the
Love constant deviations and the orientation of the axis of

anisotropy. Thus, the inversion is likely to be very robust,
as long as the data are not too noisy. In contrast, data that have
a complicated variation with fault orientation cannot be well
fitted by any weakly anisotropic model. Instead, the inversion
will tend to select a strong anisotropy model because the angu-
lar pattern of V is more complex. This behavior is exactly what
is desired when the data actually are caused by strong
anisotropy. However, it is problematical for noisy data because
the inversion will tend to fit noise by raising the strength of
anisotropy. Consequently, a suitable procedure is to compare
the results of the inversion with one in which the anisotropy is
constrained to be weak and to test whether the improvement in
fit is significant.

Although goodness-of-fit, quantified for example by the root
mean square (rms) error, is a useful metric in anisotropic inver-
sions, our findings concerning nonuniqueness indicates that, in
an inversion that includesV only, a low rms error does not guar-
antee that the estimated anisotropy closely matches that of the
Earth. Only when X and V are inverted together is the inversion
unique. Because of the eigenvalue-switching behavior described
earlier, the derivatives ∂V=∂ΔC, ∂V=∂ΔF, and ∂V=∂ΔN are
discontinuous and, consequently, unsuitable for use in an iter-
ative linearized inversion based on Newton’s Method. A slower
but more robust inversion method, such as the Monte Carlo
method used by Li et al. (2018), is required.

CONCLUSIONS
We study behavior of the non-DC components of the moment
tensor for shear faulting in a TI medium. Analytic solutions
provide insight into the relationship between source region
anisotropy and the resulting non-DC components. The inten-
sities of the ISO and CLVD components are simple functions
of the parameters ΔC, ΔF, and ΔN , which describe deviations
of the medium from isotropy. Both components vary in
strength and sign as the fault plane is rotated with respect
to the axis of symmetry of the medium. Their behaviors are
summarized as follows:

1. Amplitudes X and V of the ISO and CLVD, respectively,
are zero when the axis of symmetry is within the fault plane
or the auxiliary plane.

2. X depends upon ΔC and ΔF through the combination
�ΔF � ΔC� but not upon ΔN . It is largest when the sym-
metry axis is parallel to the P or T axes and smoothly
decreases away from that orientation. It is identically zero
in the special case ΔF=ΔC � −1.

3. V depends upon both �ΔF � 2ΔC� and ΔN . In some
cases, it is largest when the TI symmetry axis aligns with
the P or T axes, and in other cases, it is rotated by as much
as 45° toward the null axis.

4. For TI anisotropy, any orientation in which X is zero, V is
also zero, but the converse is not always true (e.g., strong
anisotropy).
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Figure 6. Four possible forms of prior information of the covariation of ΔC
andΔF: the ISO component is X � 0 (bold curve); the medium consists of p
percent ISO olivine and �100 − p� percent of a transversely ISO olivine
aggregate, the fast axes of which are aligned, with the other axes randomly
oriented (dotted curve with circles); the medium consists of p percent ISO
olivine and �100 − p� percent of a transversely ISO olivine, the slow axes of
which are aligned, with the other axes randomly oriented (dotted curve with
squares); and the medium consists of finely laminated ISO layers (which can
mimic a transversely ISO medium) (Backus, 1962), with p percent having
one velocity and �100 − p� percent having another (dotted curve with
triangles). Selected values of �100 − p� are annotated on the curves.
Preliminary reference Earth model (PREM) is shown for reference (star). The
color version of this figure is available only in the electronic edition.
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Both components alternate in sign as the fault is rotated
through 360°. This behavior can help differentiate
anisotropy-induced from source-induced ISO and CLVD com-
ponents, that is, one would not expect both explosions and
implosions in the same general area, nor CLVDs that are both
compressional and dilatational along their main axes, when
they are due to physical source conditions such as phase tran-
sitions, tensile crack, or fluid injections.

DATA AND RESOURCES
This article uses exemplary preliminary reference Earth model
(PREM) data drawn from table 2 of Dziewonski and Anderson
(1981). The transversely isotropic formulas derived in this article
are special cases of the well-known general-case formulas of earth-
quake source mechanics in anisotropic media. Consequently, this
article only provides a brief summary of the derivation method—
enough to allow a mathematically inclined reader to verify the result.
Full derivations are provided in the supplemental material, mostly to
assist in the implementation of the formula in computer algorithms,
for which details such sign conventions and choice of coordinate sys-
tems becomes very important.
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