Comprehensive *in situ* constraints on LPO fabric of fast-spreading oceanic lithosphere from seismic anisotropy

Joshua B. Russell¹, Hannah F. Mark^{2,3}, James B. Gaherty¹, Daniel Lizarralde², Pei-Ying (Patty) Lin⁴, John A. Collins², Greg Hirth⁵, Rob L. Evans²

¹Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA ²Woods Hole Oceanographic Institution, Woods Hole, MA, USA ³MIT/WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, MA, USA ⁴Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan ⁵Geological Sciences Department, Brown University, Providence, Rhode Island, USA

> Lamont-Doherty Earth Observatory Columbia University | Earth Institute

Geodynamic models simulate LPO fabric formation and evolution at mid-ocean ridge

Karato et al., 2008 Annu. Rev.

Geodynamic models simulate LPO fabric formation and evolution at mid-ocean ridge

Observations:

- Hand-sample peridotite fabrics
 - 10^{-3} -10² m length scale

Karato et al., 2008 Annu. Rev.

Geodynamic models simulate LPO fabric formation and evolution at mid-ocean ridge

Observations:

- Hand-sample peridotite fabrics 10^{-3} -10² m length scale
- Seismic anisotropy observations $10^3 - 10^7$ m length scale

Geodynamic models simulate LPO fabric formation and evolution at mid-ocean ridge

Observations:

- Hand-sample peridotite fabrics
 10⁻³-10² m length scale
- Seismic anisotropy observations
 10³-10⁷ m length scale

Karato et al., 2008 Annu. Rev.

Olivine LPO fabric types

LPO fabric development depends on stress, H₂O content, and temperature

NoMelt anisotropy observations

Russell et al. in review

7

NoMelt anisotropy observations

Russell et al. in review

NoMelt anisotropy observations

Russell et al. in review

Constraining the elastic tensor (C_{ii})

13 elastic parameters required to constrain 13 elements of C_{ij}

Azimuthal Anisotropy:

- $\rho V_{qP}(\theta)^2 = A + B_c \cos(2\theta) + B_s \sin(2\theta) + E_c \cos(4\theta) + E_s \sin(4\theta)$
- $\rho V_{qSV}(\theta)^2 = L + G_c \cos(2\theta) + G_s \sin(2\theta)$

$$\rho V_{qSH}(\theta)^2 = N - E_c \cos(4\theta) - E_s \sin(4\theta)$$

 $C_{ij} =$

$$A + B_{c} + E_{c} \quad A - 2N - E_{c} \quad F + H_{c} \quad 0 \qquad 0 \qquad \frac{1}{2}B_{s} + E_{s} \\ \cdot \qquad A - B_{c} + E_{c} \quad F - H_{c} \qquad 0 \qquad 0 \qquad \frac{1}{2}B_{s} - E_{s} \\ \cdot \qquad \cdot \qquad C \qquad 0 \qquad 0 \qquad H_{s} \\ \cdot \qquad \cdot \qquad \cdot \qquad L - G_{c} \quad G_{s} \qquad 0 \\ \cdot \qquad \cdot \qquad \cdot \qquad L + G_{c} \qquad 0 \\ \cdot \qquad \cdot \qquad \cdot \qquad \cdot \qquad N - E_{c}$$

10

Elastic model

Vs, ξ, G, B, H, E, $\Psi_{G}, \Psi_{B}, \Psi_{H}, \Psi_{E}$

12

Elastic model

Vs, ξ, G, B, H, E, $\Psi_{G}, \Psi_{B}, \Psi_{H}, \Psi_{E}$

Comparison to petrofabrics

 $\rho V_{qSV}(\theta)^2 = L + G_c \cos(2\theta) + G_s \sin(2\theta)$

 $\rho V_{qSH}(\theta)^2 = N - E_c \cos(4\theta) - E_s \sin(4\theta)$

Comparison to petrofabrics

Comparison to petrofabrics

Comparison to petrofabrics: Rotated A-type fabric?

Rotated fabrics: observations

Skemer et al., 2012 G3

Rotated fabrics: geodynamic modeling

CPO development of fullycoupled, power-law (n=2), polycrystal material

Blackman et al., 2017 GJI

Rotated fabrics: geodynamic modeling

CPO development of fullycoupled, power-law (n=2), polycrystal material

- lithospheric a-axes horizontally aligned
 - shear strains in the lithosphere too large
 - cooling rate?

Blackman et al., 2017 GJI

Comparison to petrofabrics: E-type?

Comparison to petrofabrics: D-type?

Fabric types

23

Conclusions

We model the full anisotropic variability of surface- and Pn-waves, providing a first in situ elastic tensor for 70 Ma oceanic lithosphere.

- Anisotropy strength and direction consistent with oceanic petrofabrics, bridging the gap between outcrop and seismic length scales
 - Remarkably coherent LPO alignment across NoMelt (~400x600km)
- Strong azimuthal anisotropy and relatively weak radial anisotropy consistent with:
 - (preferred) A-type fabric rotated 20°-25°, suggesting lithospheric shear strains < 200%-300%
 - or E-type fabric: moderate H₂O concentration during fabric formation near the ridge
 - or D-type fabric: high stress, low H₂O environment near ridge

